Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 34 of 34

Full-Text Articles in Engineering

Electrochemical Performance Of Li_(1-X)M_Xfepo_4 Cathode Materials Synthesized By Polymer Pyrolysis Route, Ting Li, Jiang-Feng Qian, Yu-Liang Cao, Han-Xi Yang, Xin-Ping Ai May 2007

Electrochemical Performance Of Li_(1-X)M_Xfepo_4 Cathode Materials Synthesized By Polymer Pyrolysis Route, Ting Li, Jiang-Feng Qian, Yu-Liang Cao, Han-Xi Yang, Xin-Ping Ai

Journal of Electrochemistry

Olivine Li1-xMxFePO4(M=Cr3+、Mg2+、Mn2+、Ni2+)were synthesized by a polyacrylates-pyrolysis route.The structural and electrochemical properties of the as-synthesized cathode materials were investigated by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),and electrochemical charge/discharge cycling.The results indicate that the metallic ions doped at low concentration do not affect the crystalline structure of the material,but considerably improve the rate capability and cycle performance of LiFePO4 at high rate.


The Influence Of Pva As Disperser On Lifepo_(4) Synthesized By Hydrothermal Reaction, Hui-Lin Li, Hui Zhan Aug 2006

The Influence Of Pva As Disperser On Lifepo_(4) Synthesized By Hydrothermal Reaction, Hui-Lin Li, Hui Zhan

Journal of Electrochemistry

LiFePO_(4) was synthesized by means of hydrothermal reaction,in which PVA acts as disperser and glucose as carbon source.The samples were characterized by X-ray diffraction,scanning electron microscopy and electrochemical measurement.SEM results show that the sample is homogeneously composed of grains with a particle size of ca.200nm.In the charge/discharge test,the products exhibited a 3.45V discharge voltage plateau and a maximum specific capacity of 140mAh/g.After 40 cycles,its capacity only declined by 2.1%.Besides these,the mechanism for the influence of the particle size and carbon coating on the electrochemical property of LiFePO_(4)material was discussed in detail.


Structure And Properties Of Electrodeposited Sn-Co Alloy Electrodes As Anode Material For Lithium-Ion Secondary Batteries, Hong-Hong Jiang, Ling Huang May 2006

Structure And Properties Of Electrodeposited Sn-Co Alloy Electrodes As Anode Material For Lithium-Ion Secondary Batteries, Hong-Hong Jiang, Ling Huang

Journal of Electrochemistry

The Sn-Co alloy deposits were prepared by electroplating.The structure and electrochemical performance of the electroplated Sn-Co alloys have been investigated in detail.Experimental results show that the porous Sn-Co alloy film exhibits hexagonal solid solution,with Sn as the solvent, Co as the solute.The texture of the Sn-Co alloy coating exhibits(110) preferred orientation.Electrochemical tests show that the porous Sn-Co alloy coating electrodes can deliver a discharge capacity of 643mAh/g in the first cycle.At the 20~(h) cycle the charge was 461mAh/g.At initial charge curve the irreversible capacity is probably associated to a combination of processes,which may include the reduction of small amount of …


The Synthesis, Characteristics And Performance Of Cnt Composites As Anodic Materials In Litium-Ion Battery, Quan-Feng Dong, Ming-Sen Zheng, Zhen-Cai Huang, Ming-Gang Jin, Ya-Ding Zhan, Zu-Geng Lin May 2005

The Synthesis, Characteristics And Performance Of Cnt Composites As Anodic Materials In Litium-Ion Battery, Quan-Feng Dong, Ming-Sen Zheng, Zhen-Cai Huang, Ming-Gang Jin, Ya-Ding Zhan, Zu-Geng Lin

Journal of Electrochemistry

As an anodic material for lithium ion battery the carbon nano-tube (CNT) and some compounds based on tin have ever been investigated intensively. The fruited progress has not been made yet, however. In this paper the composites of CNT and Sn/SnO_(2)were synthesized employing two methods and characterized by SEM and XRD. And the electrochemical performance of the composites was investigated.