Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda Jan 2021

Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda

Browse all Theses and Dissertations

Huntington’s disease (HD) has classically been categorized as a neurodegenerative disorder. However, the expression of the disease-causing mutated huntingtin gene in skeletal muscle may contribute to the symptoms of HD, namely those that involve involuntary muscle contraction. In the R6/2 transgenic mouse model of HD, we previously observed ion channel defects that could contribute to involuntary muscle contraction. Here, in R6/2 muscle we investigated the consequence of these ion channel defects on action potentials (APs), the first step in excitation-contraction (EC) coupling. We found that the ion channel defects were associated with depolarizing the baseline membrane potential during AP trains. …


Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda Jan 2021

Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda

Browse all Theses and Dissertations

Huntington’s disease (HD) has classically been categorized as a neurodegenerative disorder. However, the expression of the disease-causing mutated huntingtin gene in skeletal muscle may contribute to the symptoms of HD, namely those that involve involuntary muscle contraction. In the R6/2 transgenic mouse model of HD, we previously observed ion channel defects that could contribute to involuntary muscle contraction. Here, in R6/2 muscle we investigated the consequence of these ion channel defects on action potentials (APs), the first step in excitation-contraction (EC) coupling. We found that the ion channel defects were associated with depolarizing the baseline membrane potential during AP trains. …


Computational Simulation And Analysis Of Neuroplasticity, Madison E. Yancey Jan 2021

Computational Simulation And Analysis Of Neuroplasticity, Madison E. Yancey

Browse all Theses and Dissertations

Homeostatic synaptic plasticity is the process by which neurons alter their activity in response to changes in network activity. Neuroscientists attempting to understand homeostatic synaptic plasticity have developed three different mathematical methods to analyze collections of event recordings from neurons acting as a proxy for neuronal activity. These collections of events are from control data and treatment data, referring to the treatment of neuron cultures with pharmacological agents that augment or inhibit network activity. If the distribution of control events can be functionally mapped to the distribution of treatment events, a better understanding of the biological processes underlying homeostatic synaptic …