Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Browse all Theses and Dissertations

2021

Aircraft

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Development Of A Combined Thermal Management And Power Generation System Using A Multi-Mode Rankine Cycle, Nathaniel M. Payne Jan 2021

Development Of A Combined Thermal Management And Power Generation System Using A Multi-Mode Rankine Cycle, Nathaniel M. Payne

Browse all Theses and Dissertations

Two sub-systems that present a significant challenge in the development of high performance air vehicle exceeding speeds of Mach 5 are the power generation and thermal management sub-systems. The air friction experienced at high speeds, particularly around the engine, generates large thermal loads that need to be managed. In addition, traditional jet engines do not operate at speeds greater than Mach 3, therefore eliminating the possibility of a rotating power generator. A multi-mode water-based Rankine cycle is an innovative method to address both of these constraints of generating power and providing cooling. Implementing a Rankine cycle-based system allows for the …


Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg Jan 2021

Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg

Browse all Theses and Dissertations

A set of guidance control laws is developed for application to a reduced order dynamic aircraft model. A feedback control formulation utilizing a linear quadratic regulator (LQR) is developed, together with methods for easing the design burden associated with gain tuning. Metrics are developed to assess the stability margin of the controller over the full flight envelope of a notional unmanned aerial vehicle (UAV) model. A feedforward control path is then added to the architecture. The performance of the guidance control laws is assessed through time domain step response metrics as well as through execution of a design mission. The …


Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg Jan 2021

Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg

Browse all Theses and Dissertations

A set of guidance control laws is developed for application to a reduced order dynamic aircraft model. A feedback control formulation utilizing a linear quadratic regulator (LQR) is developed, together with methods for easing the design burden associated with gain tuning. Metrics are developed to assess the stability margin of the controller over the full flight envelope of a notional unmanned aerial vehicle (UAV) model. A feedforward control path is then added to the architecture. The performance of the guidance control laws is assessed through time domain step response metrics as well as through execution of a design mission. The …


Bayesian Inspired Multi-Fidelity Optimization With Aerodynamic Design, Christopher Corey Fischer Jan 2021

Bayesian Inspired Multi-Fidelity Optimization With Aerodynamic Design, Christopher Corey Fischer

Browse all Theses and Dissertations

In most engineering design problems, there exist multiple models of varying fidelities for use in predicting a single system response such as Computational Fluid Dynamics (CFD) models constructed using Potential Flow, Euler equations, or full physics Navier Stokes implementation. Engineering design is constantly pushing the forefront of the field through imposing stricter and more complex constraints on system performance, thus elevating the need for use of high-fidelity models in the design process. Increasing fidelity level often correlates to an increase in cost (financial, computational time, and computational resources). Traditional design processes rely upon low-fidelity models for expedience and resource savings. …