Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Shear Force Fiber Spinning: Process Parameter And Polymer Solution Property Considerations, Arzan C. Dotivala, Kavya P. Puthuveetil, Christina Tang Jan 2019

Shear Force Fiber Spinning: Process Parameter And Polymer Solution Property Considerations, Arzan C. Dotivala, Kavya P. Puthuveetil, Christina Tang

Chemical and Life Science Engineering Publications

For application of polymer nanofibers (e.g., sensors, and scaffolds to study cell behavior) it is important to control the spatial orientation of the fibers. We compare the ability to align and pattern fibers using shear force fiber spinning, i.e. contacting a drop of polymer solution with a rotating collector to mechanically draw a fiber, with electrospinning onto a rotating drum. Using polystyrene as a model system, we observe that the fiber spacing using shear force fiber spinning was more uniform than electrospinning with the rotating drum with relative standard deviations of 18% and 39%, respectively. Importantly, the approaches are complementary …


Modeling Electrospun Fibrous Materials, Sina Hassanpouryousefi Jan 2019

Modeling Electrospun Fibrous Materials, Sina Hassanpouryousefi

Theses and Dissertations

Electrospinning has been the focus of countless studies for the past decades for applications, including but not limited to, filtration, tissue engineering, and catalysis. Electrospinning is a one-step process for producing nano- and/or micro-fibrous materials with diameters ranging typically from 50 to 5000 nm. The simulation algorithm presented here is based on a novel mass-spring-damper (MSD) approach devised to incorporate the mechanical properties of the fibers in predicting the formation and morphology of the electrospun fibers as they travel from the needle toward the collector, and as they deposit on the substrate. This work is the first to develop a …