Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Engineering

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer across …


Evaluation And Analysis Of Ethane Transformation To Liquid Hydrocarbons Through Steam Cracking, Christian Omar Villa Santos, Wasiu Peter Oladipupo, Taufik Ridha, Rakesh Agrawal Aug 2018

Evaluation And Analysis Of Ethane Transformation To Liquid Hydrocarbons Through Steam Cracking, Christian Omar Villa Santos, Wasiu Peter Oladipupo, Taufik Ridha, Rakesh Agrawal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Process design and sensitivity studies for a steam cracking reactor was performed. Steam cracking is commonly employed to convert ethane to ethylene, a building block of many other products. Although this technology is generally employed at large scale (>6 Billion pounds of ethylene per year), understanding the process and its economic performance is critical to set target criteria for other processes under development. Aspen Plus was used to simulate the ethane steam cracking reactor and other process units. Sensitivity analysis was performed to determine the most efficient and cost-effective operation regarding product yield. The results show that the maximum …


Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy Aug 2018

Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Dehydrogenation of alkanes is the first step in transforming light hydrocarbons into liquid fuels and chemicals. This process has traditionally used platinum alloys as catalysts. Alloys are used industrially because they have a greater selectivity than monometallic platinum. Alloying platinum with an inactive promoter modifies the crystalline structure of the surface (geometric effect), and the 5d electrons in platinum responsible for chemistry (electronic effect); both have been suggested to be primarily responsible for dehydrogenation selectivity in platinum alloys. Alloy catalysts have been synthesized using early 3d transition metal promoters with the same Pt3M crystal structure. X-Ray Absorption Spectroscopy …


Metabolic Comparison Of Wild-Type And Transgenic Synechocystis Pcc 6803 Cyanobacteria, Ian A. Mcluckey, John A. Morgan, Joel Yu King Hing Aug 2017

Metabolic Comparison Of Wild-Type And Transgenic Synechocystis Pcc 6803 Cyanobacteria, Ian A. Mcluckey, John A. Morgan, Joel Yu King Hing

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Calvin-Benson (CBB) cycle is an essential part of nature. This phenomenon allows carbon molecules in carbon dioxide from the atmosphere to be converted into useful energy in the form of sugars. Cyanobacteria are single-celled organisms capable of utilizing energy from sunlight to drive this cycle and are also readily engineered. In hopes of improving this cycle, we compared a wild-type version of the Synechocystis PCC6803 cyanobacteria to an engineered version overexpressing the enzyme FBA (fructose-biphosphate aldolase), called 70 glpX, to deduce how the overexpressing strain is able to be more photosynthetically efficient. To do this, comparative metabolomics were done …


Dynamic Behavior Of A Clamped-Clamped Bi-Stable Laminate For Energy Harvesting, Ajay V. Kumar, Andres F. Arrieta Ph.D., Myungwon Hwang Aug 2016

Dynamic Behavior Of A Clamped-Clamped Bi-Stable Laminate For Energy Harvesting, Ajay V. Kumar, Andres F. Arrieta Ph.D., Myungwon Hwang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Multi-stable laminates have many applications in morphing structures, energy harvesting devices, and metamaterials due to the specific characteristics attributed to the exhibited stable states. Changes between stable states allow for large deflections, on-demand variation of the stiffness of compliant structures embedded within these elements, and control of effective dynamic properties in periodic lattices. These changes in state can be accessed via a snap-through instability triggered by introducing a well-defined activation energy. The resulting oscillations could enable broadband energy harvesting via piezoelectric transduction and resistive circuits. In this paper, a clamped-clamped bi-stable laminate is studied to understand the behavior of the …


Parametric And Design Analysis On Thermoelectric Generators, Shouyuan Huang Aug 2016

Parametric And Design Analysis On Thermoelectric Generators, Shouyuan Huang

Open Access Theses

In facing the limited energy source reserves and environmental problems, thermoelectric generators (TEGs) are one of the promising waste heat recovery systems. The modern TEGs for exhaust stream (e.g. from automobiles) can improve the fuel economy by around 5%, taking advantage of the recent developed thermoelectric (TE) materials.

In this work, we aimed at designing a TEG as an add-on module for a gas-phase heat exchanger with maximized power output, and without negative impact (e.g. maintaining a minimum heat dissipation rate from the hot side). We first developed a parametric optimization algorithm using response surface method (RSM) and genetic algorithm …


Development Of A Novel Polymer-Garnet Solid State Composite Electrolyte Incorporating Li-La-Zr-Bi-O And Polyethylene Oxide, Muhammed Ramazan Oduncu Aug 2016

Development Of A Novel Polymer-Garnet Solid State Composite Electrolyte Incorporating Li-La-Zr-Bi-O And Polyethylene Oxide, Muhammed Ramazan Oduncu

Open Access Theses

Current lithium ion batteries are comprised of organic liquid electrolytes - a mixture of lithium salts and binary solvents such as ethylene carbonate (EC) and dimethyl carbonate (DMC). The main drawbacks of this liquid mixture related to safety are flammability of the organic solvents and chemical instability with the electrode materials. To date, various ceramic and polymer materials have been considered which overcome safety issues. However, a common problem of these solid state materials is that they are not able to provide high ionic conductivity at ambient temperatures. Garnet-type cubic Li7La 3Zr2O12 ceramic material has attracted much interest because of …


Behavior And Design Of Steel-Plate Composite (Sc) Walls For Blast Loads, Jakob C Bruhl Apr 2015

Behavior And Design Of Steel-Plate Composite (Sc) Walls For Blast Loads, Jakob C Bruhl

Open Access Dissertations

Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental and analytical …


Control Of Modular Multilevel Converters For Grid Integration Of Full-Scale Wind Energy Conversion Systems, Suman Debnath Apr 2015

Control Of Modular Multilevel Converters For Grid Integration Of Full-Scale Wind Energy Conversion Systems, Suman Debnath

Open Access Dissertations

The growing demand for wind power generation has pushed the capacity of wind turbines towards MW power levels. Higher capacity of the wind turbines necessitates operation of the generators and power electronic conversion systems at higher voltage/power levels. The power electronic conversion system of a wind energy conversion system (WECS) needs to meet the stringent requirements in terms of reliability, efficiency, scalability and ease of maintenance, power quality, and dv/dt stress on the generator/transformer. Although the multilevel converters including the neutral point clamped (NPC) converter and the active NPC converter meet most of the requirements, they fall short in reliability …


Overcoming Fundamental Barriers In Photovoltaic And Terahertz Generation, Chao Zhou Apr 2015

Overcoming Fundamental Barriers In Photovoltaic And Terahertz Generation, Chao Zhou

Open Access Theses

Several fundamental barriers limit the performance of opto-electronic conversion processes below 100%. Two specific examples of current technological interest include photovoltaic conversion of sunlight into electricity (i.e., solar cells), and terahertz generation from optical sources. In particular, solar cells are limited not only by the Carnot limit associated with the second law (approximately 86% at room temperature), but also by radiative recombination, non-reciprocity, carrier thermalization, and sub-bandgap losses. In the case of terahertz generation, the typical process of difference frequency generation relies on two input optical waves with only a small difference between them to generate the desired output; however, …


Kesterite Thin-Film Solar Cell Absorbers Derived Using Inhomogeneous Czts Nanoparticles, Wei-Chang D. Yang Jan 2015

Kesterite Thin-Film Solar Cell Absorbers Derived Using Inhomogeneous Czts Nanoparticles, Wei-Chang D. Yang

Open Access Dissertations

My doctoral research focuses on understanding the structure-property-processing relationship of the kesterite materials to improve their device performance. It is recognized in both my own work and the recent literature that the structural and compositional integrities of CZTSSe are crucial to derive the solar cell grade kesterite thin-films. Analytical electron microscopy (AEM) allows me to demonstrate the structural and compositional inhomogeneity of the CZTS nanoparticles and CZTSSe thin-films at the nanoscale. For example, the observed forbidden reflections in TED patterns and FFT diffractograms corresponding to HRTEM images indicate that cation disorder leads to stacking faults in CZTS nanoparticles. Probe-corrected STEM …


Integrating Pro-Environmental Behavior With Transportation Network Modeling: User And System Level Strategies, Implementation, And Evaluation, Husain M. Abdul Aziz Oct 2014

Integrating Pro-Environmental Behavior With Transportation Network Modeling: User And System Level Strategies, Implementation, And Evaluation, Husain M. Abdul Aziz

Open Access Dissertations

Personal transport is a leading contributor to fossil fuel consumption and greenhouse (GHG) emissions in the U.S. The U.S. Energy Information Administration (EIA) reports that light-duty vehicles (LDV) are responsible for 61\% of all transportation related energy consumption in 2012, which is equivalent to 8.4 million barrels of oil (fossil fuel) per day. The carbon content in fossil fuels is the primary source of GHG emissions that links to the challenge associated with climate change. Evidently, it is high time to develop actionable and innovative strategies to reduce fuel consumption and GHG emissions from the road transportation networks. This dissertation …


Waste Heat Recovery Options In A Large Gas-Turbine Combined Power Plant, Ularee Upathumchard Oct 2014

Waste Heat Recovery Options In A Large Gas-Turbine Combined Power Plant, Ularee Upathumchard

Open Access Theses

This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste …


Tools For Efficient Design Of Multicomponent Separation Processes, Joshua Lee Huff Oct 2014

Tools For Efficient Design Of Multicomponent Separation Processes, Joshua Lee Huff

Open Access Dissertations

Separations account for as much as 85% of plant operating costs in chemical production; it is therefore important that they be designed with energy efficiency in mind. This can only be achieved if two things are achieved: the complete space of design options is known, and an accurate way is developed to compare all possible design options. For both membrane separation cascades and multicomponent distillation configurations, this dissertation explores methods for designing energy efficient separations.^ The operating cost of membranes used in production of nitrogen gas from air is largely driven by the compressors required to maintain a pressure differential. …


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …


A Novel Microgrid Demand-Side Management System For Manufacturing Facilities, Terance J. Harper, William J. Hutzel, James C. Foreman, Aaron L. Adams, Athula Kulatunga Jan 2014

A Novel Microgrid Demand-Side Management System For Manufacturing Facilities, Terance J. Harper, William J. Hutzel, James C. Foreman, Aaron L. Adams, Athula Kulatunga

Purdue Polytechnic Masters Theses

Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable.

For this research, a manufacturing process that had approximately …


Synthesizing Bismuth Telluride Nanowires In A Large Scale And Investigating The Energy Filtering Effect By Blending Bismuth Telluride Nanowires And Silver Nanoparticle In Thermoelectrics, Henka Darsono, Haiyu Fang, Yue Wu Oct 2013

Synthesizing Bismuth Telluride Nanowires In A Large Scale And Investigating The Energy Filtering Effect By Blending Bismuth Telluride Nanowires And Silver Nanoparticle In Thermoelectrics, Henka Darsono, Haiyu Fang, Yue Wu

The Summer Undergraduate Research Fellowship (SURF) Symposium

More than 50% of the energy sources becomes “waste” energy generally dissipated to the atmosphere in the form of heat. Thermoelectric effect is a conversion of temperature difference to electric voltage and can be used to convert the wasted heat to useful work. Nanomaterials have great potentials in the field of thermoelectric effect since they have properties that can allow higher efficiency in converting this wasted heat to electricity as compared to bulk materials. The purpose of this project is to develop a method to synthesize bismuth telluride (Bi2Te3) nanowires on a large scale and incorporate …


Photolithography In Fabrication Of Thin-Film Solar Cells, Yusheng Zhu, Rakesh Agrawal Oct 2013

Photolithography In Fabrication Of Thin-Film Solar Cells, Yusheng Zhu, Rakesh Agrawal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solar energy has steadily increased its efficiency and cost-effectiveness throughout the past three decades and seems poised to compete with current primary energy (natural gas, oil, coal) as the need for alternative energy sources rises. One type of solar cell, thin-film cells, often relies on use of permanent photomasks in order to imprint a pattern onto the front metal contact. However, these machined metal masks are rigid and do not allow for different designs to be explored as current masks encounter difficulties in machining grids thin enough for optimization. Photolithography, traditionally used in the microfabrication field, provides a method in …


Environmental Monitoring In Preparation For The Installation Of A Green Roof, Andrew N. Martin, Ming Qu Oct 2013

Environmental Monitoring In Preparation For The Installation Of A Green Roof, Andrew N. Martin, Ming Qu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Green roofs are becoming an increasingly popular way to improve the environmental, economic, and aesthetic performance of both new and existing buildings. Along with the green roofs themselves, it is also common to install sensors to measure various environmental parameters that are affected by or important to the operation of the roof such as precipitation, temperature, and runoff. However, for most of these systems, the sensors are installed at the same time or even after the green roof. Therefore, no before-and-after comparisons can be made for those roofs. To account for this missing data, monitoring equipment was installed on a …


Solar Cell Temperature Dependent Efficiency And Very High Temperature Efficiency Limits, John Robert Wilcox Oct 2013

Solar Cell Temperature Dependent Efficiency And Very High Temperature Efficiency Limits, John Robert Wilcox

Open Access Dissertations

Clean renewable solar energy is and will continue to be a critically important source of electrical energy. Solar energy has the potential of meeting all of the world's energy needs, and has seen substantial growth in recent years. Solar cells can convert sun light directly into electrical energy, and much progress has been made in making them less expensive and more efficient. Solar cells are often characterized and modeled at 25 °C, which is significantly lower than their peak operating temperature. In some thermal concentrating systems, solar cells operate above 300 °C. Since increasing the temperature drastically affects the terminal …


Investigations Of Attitudes Towards Offshore Wind Farm Development In Ireland: Their Implication Towards Future Development Of The Industry., Aidan Melia Feb 2013

Investigations Of Attitudes Towards Offshore Wind Farm Development In Ireland: Their Implication Towards Future Development Of The Industry., Aidan Melia

Purdue Polytechnic Masters Theses

This current research investigates what the attitudes of Irish people are towards the development of offshore wind farms in Ireland. Using a qualitative approach, a questionnaire is carefully designed and distributed among a sample population from three coastal communities. One is located on the west coast and two on the east coast. The two locations on the east coast have an involvement in offshore wind farms. One of the locations plays host to Ireland’s only offshore wind farm, while there are plans in place for an offshore wind farm at the other location. The results from the questionnaires are analyzed …


Design And Use Of An Adjustable Clearance Flailing Knife Biomass Shredder To Mechanically Increase Particle Surface Area, Shawn Gregory Ehlers Jan 2013

Design And Use Of An Adjustable Clearance Flailing Knife Biomass Shredder To Mechanically Increase Particle Surface Area, Shawn Gregory Ehlers

Open Access Theses

A flailing knife shredder was designed and tested as an alternative to a hammermill for processing biomass. The machine was comprised of two cylinders with four rungs, each with five free-swinging blades. Each of the two cylinders had adjustable clearance hoods and variable speed drives. Energy usage, output characteristics and device capacities were compared with corn stover processed at moisture contents (MC) of 10%, 35% and 50% wet basis (WB). The hammermill produced a more uniform particle size distribution in comparison to the shredder. Accessibility, indicated by conductivity index, to plant constituents, revealed that the method of treatment was not-significant …


Assessing The Engineering Performance Of Affordable Net-Zero Energy Housing, Jordan P. Wallpe May 2012

Assessing The Engineering Performance Of Affordable Net-Zero Energy Housing, Jordan P. Wallpe

Purdue Polytechnic Masters Theses

The purpose of this research was to evaluate affordable technologies that are capable of providing attractive, cost-effective energy savings to the housing industry. The research did so by investigating the 2011 Solar Decathlon competition, with additional insight from the Purdue INhome. Insight from the Purdue INhome verified the importance of using a three step design process to design a net-zero energy building. In addition, energy consumption values of the INhome were used to compare and contrast different systems used in other houses.

Evaluation of unbiased competition contests gave a better understanding of how a house can realistically reach net-zero. Upon …