Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Machine learning

Discipline
Publication Year
Publication
Publication Type

Articles 1 - 30 of 57

Full-Text Articles in Engineering

Triphlapan: Predicting Hla Molecules Binding Peptides Based On Triple Coding Matrix And Transfer Learning, Meng Wang, Chuqi Lei, Jianxin Wang, Yaohang Li, Min Li Jan 2024

Triphlapan: Predicting Hla Molecules Binding Peptides Based On Triple Coding Matrix And Transfer Learning, Meng Wang, Chuqi Lei, Jianxin Wang, Yaohang Li, Min Li

Computer Science Faculty Publications

Human leukocyte antigen (HLA) recognizes foreign threats and triggers immune responses by presenting peptides to T cells. Computationally modeling the binding patterns between peptide and HLA is very important for the development of tumor vaccines. However, it is still a big challenge to accurately predict HLA molecules binding peptides. In this paper, we develop a new model TripHLApan for predicting HLA molecules binding peptides by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. We have found the main interaction site regions between HLA molecules and peptides, as well as the correlation between HLA encoding and binding …


Applications Of Ai/Ml In Maritime Cyber Supply Chains, Rafael Diaz, Ricardo Ungo, Katie Smith, Lida Haghnegahdar, Bikash Singh, Tran Phuong Jan 2024

Applications Of Ai/Ml In Maritime Cyber Supply Chains, Rafael Diaz, Ricardo Ungo, Katie Smith, Lida Haghnegahdar, Bikash Singh, Tran Phuong

School of Cybersecurity Faculty Publications

Digital transformation is a new trend that describes enterprise efforts in transitioning manual and likely outdated processes and activities to digital formats dominated by the extensive use of Industry 4.0 elements, including the pervasive use of cyber-physical systems to increase efficiency, reduce waste, and increase responsiveness. A new domain that intersects supply chain management and cybersecurity emerges as many processes as possible of the enterprise require the convergence and synchronizing of resources and information flows in data-driven environments to support planning and execution activities. Protecting the information becomes imperative as big data flows must be parsed and translated into actions …


A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari Jan 2024

A Survey On Few-Shot Class-Incremental Learning, Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

Computer Science Faculty Publications

Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks from just a few labeled samples without forgetting the previously learned ones. This setup can easily leads to catastrophic forgetting and overfitting problems, severely affecting model performance. Studying FSCIL helps overcome deep learning model limitations on data volume and acquisition time, while improving practicality and adaptability of machine learning models. This paper provides a comprehensive survey on FSCIL. Unlike previous surveys, we aim to synthesize few-shot learning and incremental …


Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …


Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland Oct 2023

Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland

Mechanical & Aerospace Engineering Theses & Dissertations

Inactive adults often have decreased musculoskeletal health and increased risk factors for chronic diseases. However, there is limited data linking biomechanical measurements of generally healthy young adults to their physical activity levels assessed through questionnaires. Commonly used data collection methods in biomechanics for assessing musculoskeletal health include but are not limited to muscle quality (measured as echo intensity when using ultrasound), isokinetic (i.e., dynamic) muscle strength, muscle activations, and functional movement assessments using motion capture systems. These assessments can be time consuming for both data collection and processing. Therefore, understanding if all biomechanical assessments are necessary to classify the activity …


Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego May 2023

Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego

Electrical & Computer Engineering Theses & Dissertations

World Health Organization (WHO) data show that around 684,000 people die from falls yearly, making it the second-highest mortality rate after traffic accidents [1]. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. In light of the recent widespread adoption of wearable sensors, it has become increasingly critical that fall detection models are developed that can effectively process large and sequential sensor signal data. Several researchers have recently developed fall detection algorithms based on wearable sensor data. However, real-time fall detection remains challenging because of the wide …


Gpu Utilization: Predictive Sarimax Time Series Analysis, Dorothy Dorie Parry Apr 2023

Gpu Utilization: Predictive Sarimax Time Series Analysis, Dorothy Dorie Parry

Modeling, Simulation and Visualization Student Capstone Conference

This work explores collecting performance metrics and leveraging the output for prediction on a memory-intensive parallel image classification algorithm - Inception v3 (or "Inception3"). Experimental results were collected by nvidia-smi on a computational node DGX-1, equipped with eight Tesla V100 Graphic Processing Units (GPUs). Time series analysis was performed on the GPU utilization data taken, for multiple runs, of Inception3’s image classification algorithm (see Figure 1). The time series model applied was Seasonal Autoregressive Integrated Moving Average Exogenous (SARIMAX).


Lidar Buoy Detection For Autonomous Marine Vessel Using Pointnet Classification, Christopher Adolphi, Dorothy Dorie Parry, Yaohang Li, Masha Sosonkina, Ahmet Saglam, Yiannis E. Papelis Apr 2023

Lidar Buoy Detection For Autonomous Marine Vessel Using Pointnet Classification, Christopher Adolphi, Dorothy Dorie Parry, Yaohang Li, Masha Sosonkina, Ahmet Saglam, Yiannis E. Papelis

Modeling, Simulation and Visualization Student Capstone Conference

Maritime autonomy, specifically the use of autonomous and semi-autonomous maritime vessels, is a key enabling technology supporting a set of diverse and critical research areas, including coastal and environmental resilience, assessment of waterway health, ecosystem/asset monitoring and maritime port security. Critical to the safe, efficient and reliable operation of an autonomous maritime vessel is its ability to perceive on-the-fly the external environment through onboard sensors. In this paper, buoy detection for LiDAR images is explored by using several tools and techniques: machine learning methods, Unity Game Engine (herein referred to as Unity) simulation, and traditional image processing. The Unity Game …


Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty Jan 2023

Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty

VMASC Publications

Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and …


Quantum Computing And Its Applications In Healthcare, Vu Giang Jan 2023

Quantum Computing And Its Applications In Healthcare, Vu Giang

OUR Journal: ODU Undergraduate Research Journal

This paper serves as a review of the state of quantum computing and its application in healthcare. The various avenues for how quantum computing can be applied to healthcare is discussed here along with the conversation about the limitations of the technology. With more and more efforts put into the development of these computers, its future is promising with the endeavors of furthering healthcare and various other industries.


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur Jan 2023

Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur

Mechanical & Aerospace Engineering Faculty Publications

The present paper culminates several investigations into the use of convolutional neural networks (CNNs) as a post-processing step to improve the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for subsonic flows over airfoils at low angles of attack. Time-averaged detached eddy simulation (DES)-generated flow fields serve as the target data for creating and training CNN models. CNN post-processing generates flow-field data comparable to DES resolution, but after using only URANS-level resources and properly training CNN models. This document outlines the underlying theory and progress toward the goal of improving URANS simulations by looking at flow predictions for a class of …


Heart Disease Prediction Using Stacking Model With Balancing Techniques And Dimensionality Reduction, Ayesha Noor, Nadeem Javaid, Nabil Alrajeh, Babar Mansoor, Ali Khaqan, Safdar Hussain Bouk Jan 2023

Heart Disease Prediction Using Stacking Model With Balancing Techniques And Dimensionality Reduction, Ayesha Noor, Nadeem Javaid, Nabil Alrajeh, Babar Mansoor, Ali Khaqan, Safdar Hussain Bouk

School of Cybersecurity Faculty Publications

Heart disease is a serious worldwide health issue with wide-reaching effects. Since heart disease is one of the leading causes of mortality worldwide, early detection is crucial. Emerging technologies like Machine Learning (ML) are currently being actively used by the biomedical, healthcare, and health prediction industries. PaRSEL, a new stacking model is proposed in this research, that combines four classifiers, Passive Aggressive Classifier (PAC), Ridge Classifier (RC), Stochastic Gradient Descent Classifier (SGDC), and eXtreme Gradient Boosting (XGBoost), at the base layer, and LogitBoost is deployed for the final predictions at the meta layer. The imbalanced and irrelevant features in the …


An Optimized And Scalable Blockchain-Based Distributed Learning Platform For Consumer Iot, Zhaocheng Wang, Xueying Liu, Xinming Shao, Abdullah Alghamdi, Md. Shirajum Munir, Sujit Biswas Jan 2023

An Optimized And Scalable Blockchain-Based Distributed Learning Platform For Consumer Iot, Zhaocheng Wang, Xueying Liu, Xinming Shao, Abdullah Alghamdi, Md. Shirajum Munir, Sujit Biswas

School of Cybersecurity Faculty Publications

Consumer Internet of Things (CIoT) manufacturers seek customer feedback to enhance their products and services, creating a smart ecosystem, like a smart home. Due to security and privacy concerns, blockchain-based federated learning (BCFL) ecosystems can let CIoT manufacturers update their machine learning (ML) models using end-user data. Federated learning (FL) uses privacy-preserving ML techniques to forecast customers' needs and consumption habits, and blockchain replaces the centralized aggregator to safeguard the ecosystem. However, blockchain technology (BCT) struggles with scalability and quick ledger expansion. In BCFL, local model generation and secure aggregation are other issues. This research introduces a novel architecture, emphasizing …


Biocybersecurity And Deterrence: Hypothetical Rwandan Considerations, Issah Samori, Gbadebo Odularu, Lucas Potter, Xavier-Lewis Palmer Jan 2023

Biocybersecurity And Deterrence: Hypothetical Rwandan Considerations, Issah Samori, Gbadebo Odularu, Lucas Potter, Xavier-Lewis Palmer

Community & Environmental Health Faculty Publications

Digitalization and sustainability are popular words within modern disciplines as practitioners each look toward the future of their respective fields. Specifically for the African continent, which is making great strides in developmental targets, those two terms are central to core aspects of policy initiatives that may foster cooperation across its varied lands and nations. One of the underlying challenges that confront Africa is a lack of strong regional integration across socioeconomic and political programs; there is value in African regions having more regional connectedness. We assess the rate of regional integration and development in Africa and discuss how to alleviate …


A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen Jan 2023

A Survey Of Using Machine Learning In Iot Security And The Challenges Faced By Researchers, Khawlah M. Harahsheh, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber …


Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty Jan 2023

Security Of Internet Of Things (Iot) Using Federated Learning And Deep Learning — Recent Advancements, Issues And Prospects, Vinay Gugueoth, Sunitha Safavat, Sachin Shetty

Electrical & Computer Engineering Faculty Publications

There is a great demand for an efficient security framework which can secure IoT systems from potential adversarial attacks. However, it is challenging to design a suitable security model for IoT considering the dynamic and distributed nature of IoT. This motivates the researchers to focus more on investigating the role of machine learning (ML) in the designing of security models. A brief analysis of different ML algorithms for IoT security is discussed along with the advantages and limitations of ML algorithms. Existing studies state that ML algorithms suffer from the problem of high computational overhead and risk of privacy leakage. …


Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette Jan 2023

Toward Real-Time, Robust Wearable Sensor Fall Detection Using Deep Learning Methods: A Feasibility Study, Haben Yhdego, Christopher Paolini, Michel Audette

Electrical & Computer Engineering Faculty Publications

Real-time fall detection using a wearable sensor remains a challenging problem due to high gait variability. Furthermore, finding the type of sensor to use and the optimal location of the sensors are also essential factors for real-time fall-detection systems. This work presents real-time fall-detection methods using deep learning models. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. First, we developed and compared different data-segmentation techniques for sliding windows. Next, we implemented various techniques to balance the datasets because collecting fall datasets in the real-time setting has …


Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.) Jan 2023

Opioid Use Disorder Prediction Using Machine Learning Of Fmri Data, A. Temtam, Liangsuo Ma, F. Gerard Moeller, M. S. Sadique, K. M. Iftekharuddin, Khan M. Iftekharuddin (Ed.), Weijie Chen (Ed.)

Electrical & Computer Engineering Faculty Publications

According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical …


Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.) Jan 2023

Transfer Learning Using Infrared And Optical Full Motion Video Data For Gender Classification, Alexander M. Glandon, Joe Zalameda, Khan M. Iftekharuddin, Gabor F. Fulop (Ed.), David Z. Ting (Ed.), Lucy L. Zheng (Ed.)

Electrical & Computer Engineering Faculty Publications

This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification.


Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner Jan 2023

Deep-Learning-Based Classification Of Digitally Modulated Signals Using Capsule Networks And Cyclic Cumulants, John A. Snoap, Dimitrie C. Popescu, James A. Latshaw, Chad M. Spooner

Electrical & Computer Engineering Faculty Publications

This paper presents a novel deep-learning (DL)-based approach for classifying digitally modulated signals, which involves the use of capsule networks (CAPs) together with the cyclic cumulant (CC) features of the signals. These were blindly estimated using cyclostationary signal processing (CSP) and were then input into the CAP for training and classification. The classification performance and the generalization abilities of the proposed approach were tested using two distinct datasets that contained the same types of digitally modulated signals, but had distinct generation parameters. The results showed that the classification of digitally modulated signals using CAPs and CCs proposed in the paper …


Detection, Tracking, And Classification Of Aircraft And Birds From Multirotor Small Unmanned Aircraft Systems, Chester Valentine Dolph Dec 2022

Detection, Tracking, And Classification Of Aircraft And Birds From Multirotor Small Unmanned Aircraft Systems, Chester Valentine Dolph

Electrical & Computer Engineering Theses & Dissertations

The ability for small Unmanned Aircraft Systems (sUAS) to safely operate beyond visual line of sight (BVLOS) is of great interest to governments, businesses, and scientific research. One critical element for sUAS to operate BVLOS is the capability to avoid other air traffic. While many aircraft will be cooperative and broadcast their locations using Automatic Dependent Surveillance Broadcast (ADS-B), it is expected that many aircraft will remain non-cooperative – meaning they do not communicate position or flight plan to other aircraft. Avoiding mid-air collisions with non-cooperative aircraft is a critical limitation to widespread sUAS flying BVLOS. Examples of non-cooperative traffic …


Cyber Resilience Analytics For Cyber-Physical Systems, Md Ariful Haque Dec 2022

Cyber Resilience Analytics For Cyber-Physical Systems, Md Ariful Haque

Electrical & Computer Engineering Theses & Dissertations

Cyber-physical systems (CPSs) are complex systems that evolve from the integrations of components dealing with physical processes and real-time computations, along with networking. CPSs often incorporate approaches merging from different scientific fields such as embedded systems, control systems, operational technology, information technology systems (ITS), and cybernetics. Today critical infrastructures (CIs) (e.g., energy systems, electric grids, etc.) and other CPSs (e.g., manufacturing industries, autonomous transportation systems, etc.) are experiencing challenges in dealing with cyberattacks. Major cybersecurity concerns are rising around CPSs because of their ever-growing use of information technology based automation. Often the security concerns are limited to probability-based possible attack …


Emotion Detection Using An Ensemble Model Trained With Physiological Signals And Inferred Arousal-Valence States, Matthew Nathanael Gray Aug 2022

Emotion Detection Using An Ensemble Model Trained With Physiological Signals And Inferred Arousal-Valence States, Matthew Nathanael Gray

Electrical & Computer Engineering Theses & Dissertations

Affective computing is an exciting and transformative field that is gaining in popularity among psychologists, statisticians, and computer scientists. The ability of a machine to infer human emotion and mood, i.e. affective states, has the potential to greatly improve human-machine interaction in our increasingly digital world. In this work, an ensemble model methodology for detecting human emotions across multiple subjects is outlined. The Continuously Annotated Signals of Emotion (CASE) dataset, which is a dataset of physiological signals labeled with discrete emotions from video stimuli as well as subject-reported continuous emotions, arousal and valence, from the circumplex model, is used for …


Runtime Energy Savings Based On Machine Learning Models For Multicore Applications, Vaibhav Sundriyal, Masha Sosonkina Jun 2022

Runtime Energy Savings Based On Machine Learning Models For Multicore Applications, Vaibhav Sundriyal, Masha Sosonkina

Electrical & Computer Engineering Faculty Publications

To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize energy savings under a given performance degradation. Machine learning techniques were utilized to develop performance models which would provide accurate performance prediction with change in operating core-uncore frequency. Experiments, performed on a node (28 cores) of a modern computing platform showed significant energy savings of as much as 26% with performance degradation of as low as 5% under the proposed strategy compared with the execution in the unlimited power case.


Machine Learning Classification Of Digitally Modulated Signals, James A. Latshaw May 2022

Machine Learning Classification Of Digitally Modulated Signals, James A. Latshaw

Electrical & Computer Engineering Theses & Dissertations

Automatic classification of digitally modulated signals is a challenging problem that has traditionally been approached using signal processing tools such as log-likelihood algorithms for signal classification or cyclostationary signal analysis. These approaches are computationally intensive and cumbersome in general, and in recent years alternative approaches that use machine learning have been presented in the literature for automatic classification of digitally modulated signals. This thesis studies deep learning approaches for classifying digitally modulated signals that use deep artificial neural networks in conjunction with the canonical representation of digitally modulated signals in terms of in-phase and quadrature components. Specifically, capsule networks are …


Data-Driven Framework For Understanding & Modeling Ride-Sourcing Transportation Systems, Bishoy Kelleny May 2022

Data-Driven Framework For Understanding & Modeling Ride-Sourcing Transportation Systems, Bishoy Kelleny

Civil & Environmental Engineering Theses & Dissertations

Ride-sourcing transportation services offered by transportation network companies (TNCs) like Uber and Lyft are disrupting the transportation landscape. The growing demand on these services, along with their potential short and long-term impacts on the environment, society, and infrastructure emphasize the need to further understand the ride-sourcing system. There were no sufficient data to fully understand the system and integrate it within regional multimodal transportation frameworks. This can be attributed to commercial and competition reasons, given the technology-enabled and innovative nature of the system. Recently, in 2019, the City of Chicago the released an extensive and complete ride-sourcing trip-level data for …


Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci May 2022

Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci

Mechanical & Aerospace Engineering Theses & Dissertations

Current analysis of manufacturing defects in the production of rims and tires via x-ray inspection at an industry partner’s manufacturing plant requires that a quality control specialist visually inspect radiographic images for defects of varying sizes. For each sample, twelve radiographs are taken within 35 seconds. Some defects are very small in size and difficult to see (e.g., pinholes) whereas others are large and easily identifiable. Implementing this quality control practice across all products in its human-effort driven state is not feasible given the time constraint present for analysis.

This study aims to identify and develop an object detector capable …


Deapsecure Computational Training For Cybersecurity: Third-Year Improvements And Impacts, Bahador Dodge, Jacob Strother, Rosby Asiamah, Karina Arcaute, Wirawan Purwanto, Masha Sosonkina, Hongyi Wu Apr 2022

Deapsecure Computational Training For Cybersecurity: Third-Year Improvements And Impacts, Bahador Dodge, Jacob Strother, Rosby Asiamah, Karina Arcaute, Wirawan Purwanto, Masha Sosonkina, Hongyi Wu

Modeling, Simulation and Visualization Student Capstone Conference

The Data-Enabled Advanced Training Program for Cybersecurity Research and Education (DeapSECURE) was introduced in 2018 as a non-degree training consisting of six modules covering a broad range of cyberinfrastructure techniques, including high performance computing, big data, machine learning and advanced cryptography, aimed at reducing the gap between current cybersecurity curricula and requirements needed for advanced research and industrial projects. By its third year, DeapSECURE, like many other educational endeavors, experienced abrupt changes brought by the COVID-19 pandemic. The training had to be retooled to adapt to fully online delivery. Hands-on activities were reformatted to accommodate self-paced learning. In this paper, …


Human Interaction With Fake News, Autumn Woodson, Sampath Jayarathna (Mentor) Jan 2022

Human Interaction With Fake News, Autumn Woodson, Sampath Jayarathna (Mentor)

Computer & Information Science: Research Experiences for Undergraduates in Disinformation Detection and Analytics

No abstract provided.