Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 67 of 67

Full-Text Articles in Engineering

Predictive Control Of Power Grid-Connected Energy Systems Based On Energy And Exergy Metrics, Meysam Razmara Jan 2016

Predictive Control Of Power Grid-Connected Energy Systems Based On Energy And Exergy Metrics, Meysam Razmara

Dissertations, Master's Theses and Master's Reports

Building and transportation sectors account for 41% and 27% of total energy consumption in the US, respectively. Designing smart controllers for Heating, Ventilation and Air-Conditioning (HVAC) systems and Internal Combustion Engines (ICEs) can play a key role in reducing energy consumption. Exergy or availability is based on the First and Second Laws of Thermodynamics and is a more precise metric to evaluate energy systems including HVAC and ICE systems. This dissertation centers on development of exergy models and design of model-based controllers based on exergy and energy metrics for grid-connected energy systems including HVAC and ICEs.

In this PhD dissertation, …


Experimental Study Of The Flow Of Ferrofluid In A Porous Media Under A Magnetic Field, Muskaan Khurana Jan 2016

Experimental Study Of The Flow Of Ferrofluid In A Porous Media Under A Magnetic Field, Muskaan Khurana

Dissertations, Master's Theses and Master's Reports

This research presents results from a laboratory-scale experimental setup that was designed to visualize the behavior of ferrofluid percolation through a porous media. Ferrofluids are colloidal suspensions made of magnetic particles of a few nanometers and stabilized in carrier liquids like water or mineral oil. Ferrofluids get magnetized and align themselves in the direction of a magnetic field when a field gradient is applied.

With the help of this experiment we investigate the viability of controlling fluid flow in porous medium by a magnetic field in vicinity. The experiments show that ferrofluids can be used as a transporting media to …


Experimental Study, Modelling And Controller Design For An Rcci Engine, Naga Nithin Teja Kondipati Jan 2016

Experimental Study, Modelling And Controller Design For An Rcci Engine, Naga Nithin Teja Kondipati

Dissertations, Master's Theses and Master's Reports

Low Temperature Combustion (LTC) has got widespread attention over the past two decades in the field of Automotive Research and Development due to it’s potential for achieving higher efficiencies with near-zero engine out NOx and soot emissions. Among all the LTC strategies Reactivity controlled compression ignition (RCCI) has shown the most promising results due to it’s precise control over combustion phasing and heat release rate. However, RCCI being a dual-fuel stratified combustion, precise control over the injection timing of direct injected fuel and in-cylinder fuel reactivity of the mixture needs to be controlled effectively in order to achieve gross indicated …


Competition Vehicle Based Intake Manifold Design, Joshua N. Matiash Jan 2016

Competition Vehicle Based Intake Manifold Design, Joshua N. Matiash

Dissertations, Master's Theses and Master's Reports

A competitive vehicle in Formula SAE needs to be easy for unskilled drivers to extract the maximum performance from. This requires a predictable and manageable torque curve. This report details the development of an intake manifold for a Formula SAE car from a vehicle-based approach to produce this manageable and predictable torque. The current vehicle was instrumented and driven on a representative track to determine the usage of available torque. Based on these findings an ideal torque curve was chosen that favored increased torque at upper engine speed ranges and decreased torque at lower engine speed ranges. A 1-D engine …


Elementary Assessments And Simulations Based Proposals For New Heat Transfer Correlations And Flow Regime Maps For Annular/Stratified Regime Of Shear Driven Internal Condensing Flows, Siddharth Ravikumar Jan 2015

Elementary Assessments And Simulations Based Proposals For New Heat Transfer Correlations And Flow Regime Maps For Annular/Stratified Regime Of Shear Driven Internal Condensing Flows, Siddharth Ravikumar

Dissertations, Master's Theses and Master's Reports

Contemporary cooling applications necessitate the use of mm-scale shear driven flow condenser designs which also need to ensure substantial heat transfer rates for a wide range of flow conditions. Some modern shear driven flow condensers must meet the requirements of small size and large heat flux removal capability for variety of flow conditions. For this, effective estimates of heat transfer rate correlations and correlations for estimating the length of the annular regime are essential. Existing heat transfer correlations are built based on semi-empirical approaches which are primarily supported by large data sets, which are often mixed with insufficient explanation and …


Transient Thermoelectric Supercooling: Isosceles Current Pulses From A Response Surface Perspective And The Performance Effects Of Pulse Cooling A Heat Generating Mass, Alfred Piggott Jan 2015

Transient Thermoelectric Supercooling: Isosceles Current Pulses From A Response Surface Perspective And The Performance Effects Of Pulse Cooling A Heat Generating Mass, Alfred Piggott

Dissertations, Master's Theses and Master's Reports

With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no …


Induction Heating Of Thin Films, Paul L. Bergstrom, Melissa L. Trombley Apr 2005

Induction Heating Of Thin Films, Paul L. Bergstrom, Melissa L. Trombley

Michigan Tech Patents

A method of performing regional heating of a system having a substrate. The method may include applying a thin film to the system, and controllably energizing a coil positioned near the thin film. The energized coils thereby generate a magnetic flux. The method further includes inducing a current in the thin film with the magnetic flux thereby heating the system.