Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Artificial satellites--Optical observations

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Control Demonstration Of A Thin Deformable In-Plane Actuated Mirror, Gina A. Peterson Mar 2006

Control Demonstration Of A Thin Deformable In-Plane Actuated Mirror, Gina A. Peterson

Theses and Dissertations

Current imaging satellites are limited in resolution and coverage area by the aperture size of their primary optical mirror. To get a large optical mirror into space, current launch weight and size restrictions must be overcome. Membrane-like optical mirrors can overcome these restrictions with their very lightweight and flexible properties. However, thin, deformable membrane mirrors are very susceptible to the space environment and require active control for surface stabilization and shaping. The primary goal of this research is to demonstrate that an in-plane actuated membrane-like deformable optical mirror can be controlled to optical wavelength tolerances in a closed-loop system. Fabrication …


Axisymmetric Optical Membrane Modeling Based On Experimental Results, Brian J. Lutz Mar 2004

Axisymmetric Optical Membrane Modeling Based On Experimental Results, Brian J. Lutz

Theses and Dissertations

The United States Air Force, Department of Defense and commercial industry have recognized the great value of near-earth space development, specifically in satellites for use in communications, ground and space surveillance and more active roles. However, resolution, or the primary optic’s diameter, has been a limitation, especially for ground surveillance. Deployable optics has been investigated to allow larger optics in space and membrane optics has received increasing attention recently. The membrane’s flexible nature requires some passive and possibly active control to reduce optical distortion caused by manufacturing, deployment, or other effects during use. Piezoelectric surface controllers are one option to …


Infrared Methods For Daylight Acquisition Of Leo Satellites, Joel E. Nelson Mar 2004

Infrared Methods For Daylight Acquisition Of Leo Satellites, Joel E. Nelson

Theses and Dissertations

Raven is an award-winning optical system design paradigm that couples commercially available hardware and software along with custom data analysis and control software to produce low-cost, autonomous, and very capable space surveillance systems. The first product of the Raven program was a family of telescopes capable of generating world-class optical observation data of deep-space satellites. The key to this system was the use of astrometric techniques for position and brightness data. Astrometry compares a satellite to the star background within the sensor field of view; since the position and brightness of the star-field is well known in star catalogs, accurate …