Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Transfer Learning With Deep Recurrent Neural Networks For Remaining Useful Life Estimation, Ansi Zhang, Honglei Wang, Shaobo Li, Yuxin Cui, Guanci Yang, Jianjun Hu Nov 2018

Transfer Learning With Deep Recurrent Neural Networks For Remaining Useful Life Estimation, Ansi Zhang, Honglei Wang, Shaobo Li, Yuxin Cui, Guanci Yang, Jianjun Hu

Faculty Publications

Prognostics, such as remaining useful life (RUL) prediction, is a crucial task in condition-based maintenance. A major challenge in data-driven prognostics is the difficulty of obtaining a sufficient number of samples of failure progression. However, for traditional machine learning methods and deep neural networks, enough training data is a prerequisite to train good prediction models. In this work, we proposed a transfer learning algorithm based on Bi-directional Long Short-Term Memory (BLSTM) recurrent neural networks for RUL estimation, in which the models can be first trained on different but related datasets and then fine-tuned by the target dataset. Extensive experimental results …


Sdnet2018: An Annotated Image Dataset For Non-Contact Concrete Crack Detection Using Deep Convolutional Neural Networks, Sattar Dorafshan, Robert J. Thomas, Marc Maguire Nov 2018

Sdnet2018: An Annotated Image Dataset For Non-Contact Concrete Crack Detection Using Deep Convolutional Neural Networks, Sattar Dorafshan, Robert J. Thomas, Marc Maguire

Civil and Environmental Engineering Faculty Publications

SDNET2018 is an annotated image dataset for training, validation, and benchmarking of artificial intelligence based crack detection algorithms for concrete. SDNET2018 contains over 56,000 images of cracked and non-cracked concrete bridge decks, walls, and pavements. The dataset includes cracks as narrow as 0.06 mm and as wide as 25 mm. The dataset also includes images with a variety of obstructions, including shadows, surface roughness, scaling, edges, holes, and background debris. SDNET2018 will be useful for the continued development of concrete crack detection algorithms based on deep convolutional neural networks (DCNNs), which are a subject of continued research in the field …


Datanet: Deep Learning Based Encrypted Network Traffic Classification In Sdn Home Gateway, Pan Wang, Feng Ye, Xuejiao Chen, Yi Qian Oct 2018

Datanet: Deep Learning Based Encrypted Network Traffic Classification In Sdn Home Gateway, Pan Wang, Feng Ye, Xuejiao Chen, Yi Qian

Department of Electrical and Computer Engineering: Faculty Publications

A smart home network will support various smart devices and applications, e.g., home automation devices, E-health devices, regular computing devices, and so on. Most devices in a smart home access the Internet through a home gateway (HGW). In this paper, we propose a software-defined network (SDN)-HGW framework to better manage distributed smart home networks and support the SDN controller of the core network. The SDN controller enables efficient network quality-of-service management based on real-time traffic monitoring and resource allocation of the core network. However, it cannot provide network management in distributed smart homes. Our proposed SDN-HGW extends the control to …


End-To-End Convolutional Neural Network Model For Gear Fault Diagnosis Based On Sound Signals, Yong Yao, Honglei Wang, Shaobo Li, Zhongnhao Liu, Gui Gui, Yabo Dan, Jianjun Hu Sep 2018

End-To-End Convolutional Neural Network Model For Gear Fault Diagnosis Based On Sound Signals, Yong Yao, Honglei Wang, Shaobo Li, Zhongnhao Liu, Gui Gui, Yabo Dan, Jianjun Hu

Faculty Publications

Currently gear fault diagnosis is mainly based on vibration signals with a few studies on acoustic signal analysis. However, vibration signal acquisition is limited by its contact measuring while traditional acoustic-based gear fault diagnosis relies heavily on prior knowledge of signal processing techniques and diagnostic expertise. In this paper, a novel deep learning-based gear fault diagnosis method is proposed based on sound signal analysis. By establishing an end-to-end convolutional neural network (CNN), the time and frequency domain signals can be fed into the model as raw signals without feature engineering. Moreover, multi-channel information from different microphones can also be fused …


Product Innovation Design Based On Deep Learning And Kansei Engineering, Huafeng Quan, Shaobo Li, Jianjun Hu Aug 2018

Product Innovation Design Based On Deep Learning And Kansei Engineering, Huafeng Quan, Shaobo Li, Jianjun Hu

Faculty Publications

Creative product design is becoming critical to the success of many enterprises. However, the conventional product innovation process is hindered by two major challenges: the difficulty to capture users’ preferences and the lack of intuitive approaches to visually inspire the designer, which is especially true in fashion design and form design of many other types of products. In this paper, we propose to combine Kansei engineering and the deep learning for product innovation (KENPI) framework, which can transfer color, pattern, etc. of a style image in real time to a product’s shape automatically. To capture user preferences, we combine Kansei …


Comparison Of Deep Convolutional Neural Networks And Edge Detectors For Image-Based Crack Detection In Concrete, Sattar Dorafshan, Robert J. Thomas, Marc Maguire Aug 2018

Comparison Of Deep Convolutional Neural Networks And Edge Detectors For Image-Based Crack Detection In Concrete, Sattar Dorafshan, Robert J. Thomas, Marc Maguire

Civil and Environmental Engineering Faculty Publications

This paper compares the performance of common edge detectors and deep convolutional neural networks (DCNN) for image-based crack detection in concrete structures. A dataset of 19 high definition images (3420 sub-images, 319 with cracks and 3101 without) of concrete is analyzed using six common edge detection schemes (Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian) and using the AlexNet DCNN architecture in fully trained, transfer learning, and classifier modes. The relative performance of each crack detection method is compared here for the first time on a single dataset. Edge detection methods accurately detected 53–79% of cracked pixels, but they …


Apple Flower Detection Using Deep Convolutional Networks, Philipe A. Dias, Amy Tabb, Henry P. Medeiros Aug 2018

Apple Flower Detection Using Deep Convolutional Networks, Philipe A. Dias, Amy Tabb, Henry P. Medeiros

Electrical and Computer Engineering Faculty Research and Publications

To optimize fruit production, a portion of the flowers and fruitlets of apple trees must be removed early in the growing season. The proportion to be removed is determined by the bloom intensity, i.e., the number of flowers present in the orchard. Several automated computer vision systems have been proposed to estimate bloom intensity, but their overall performance is still far from satisfactory even in relatively controlled environments. With the goal of devising a technique for flower identification which is robust to clutter and to changes in illumination, this paper presents a method in which a pre-trained convolutional neural network …


A Multi-Step Nonlinear Dimension-Reduction Approach With Applications To Bigdata, R. Krishnan, V. A. Samaranayake, Jagannathan Sarangapani Apr 2018

A Multi-Step Nonlinear Dimension-Reduction Approach With Applications To Bigdata, R. Krishnan, V. A. Samaranayake, Jagannathan Sarangapani

Mathematics and Statistics Faculty Research & Creative Works

In this paper, a multi-step dimension-reduction approach is proposed for addressing nonlinear relationships within attributes. In this work, the attributes in the data are first organized into groups. In each group, the dimensions are reduced via a parametric mapping that takes into account nonlinear relationships. Mapping parameters are estimated using a low rank singular value decomposition (SVD) of distance covariance. Subsequently, the attributes are reorganized into groups based on the magnitude of their respective singular values. The group-wise organization and the subsequent reduction process is performed for multiple steps until a singular value-based user-defined criterion is satisfied. Simulation analysis is …


Deep Learning Nuclei Detection In Digitized Histology Images By Superpixels, Sudhir Sornapudi, R. Joe Stanley, William V. Stoecker, Haidar Almubarak, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane R. Frazier Mar 2018

Deep Learning Nuclei Detection In Digitized Histology Images By Superpixels, Sudhir Sornapudi, R. Joe Stanley, William V. Stoecker, Haidar Almubarak, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane R. Frazier

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades.

Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network.

Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with …


Patent Keyword Extraction Algorithm Based On Distributed Representation For Patent Classification, Jie Hu, Shaobo Li, Yong Yao, Liya Yu, Guanci Yang, Jianjun Hu Feb 2018

Patent Keyword Extraction Algorithm Based On Distributed Representation For Patent Classification, Jie Hu, Shaobo Li, Yong Yao, Liya Yu, Guanci Yang, Jianjun Hu

Faculty Publications

Many text mining tasks such as text retrieval, text summarization, and text comparisons depend on the extraction of representative keywords from the main text. Most existing keyword extraction algorithms are based on discrete bag-of-words type of word representation of the text. In this paper, we propose a patent keyword extraction algorithm (PKEA) based on the distributed Skip-gram model for patent classification. We also develop a set of quantitative performance measures for keyword extraction evaluation based on information gain and cross-validation, based on Support Vector Machine (SVM) classification, which are valuable when human-annotated keywords are not available. We used a standard …


Beef Cattle Instance Segmentation Using Mask R-Convolutional Neural Network, Mohammad Danish Jan 2018

Beef Cattle Instance Segmentation Using Mask R-Convolutional Neural Network, Mohammad Danish

Dissertations

Maintaining the cattle farm along with the wellbeing of every heifer has been the major concern in dairy farm. A robust system is required which can tackle the problem of continuous monitoring of cows. the computer vision techniques provide a new way to understand the challenges related to the identification and welfare of the cows. This paper presents a state-of-art instance segmentation mask RCNN algorithm to train and build a model on a very challenging cow dataset that is captured during the winter season. The dataset poses many challenges such as overlapping of cows, partial occlusion, similarity between cows and …


Adapt At Semeval-2018 Task 9: Skip-Gram Word Embeddings For Unsupervised Hypernym Discovery In Specialised Corpora, Alfredo Maldonado, Filip Klubicka Jan 2018

Adapt At Semeval-2018 Task 9: Skip-Gram Word Embeddings For Unsupervised Hypernym Discovery In Specialised Corpora, Alfredo Maldonado, Filip Klubicka

Other resources

This paper describes a simple but competitive unsupervised system for hypernym discovery. The system uses skip-gram word embeddings with negative sampling, trained on specialised corpora. Candidate hypernyms for an input word are predicted based on cosine similar- ity scores. Two sets of word embedding mod- els were trained separately on two specialised corpora: a medical corpus and a music indus- try corpus. Our system scored highest in the medical domain among the competing unsu- pervised systems but performed poorly on the music industry domain. Our approach does not depend on any external data other than raw specialised corpora.


Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai Jan 2018

Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai

Research outputs 2014 to 2021

For robots to attain more general-purpose utility, grasping is a necessary skill to master. Such general-purpose robots may use their perception abilities to visually identify grasps for a given object. A grasp describes how a robotic end-effector can be arranged to securely grab an object and successfully lift it without slippage. Traditionally, grasp detection requires expert human knowledge to analytically form the task-specific algorithm, but this is an arduous and time-consuming approach. During the last five years, deep learning methods have enabled significant advancements in robotic vision, natural language processing, and automated driving applications. The successful results of these methods …