Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2018

Deep learning

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 31

Full-Text Articles in Engineering

Computational Intelligence In Steganography: Adaptive Image Watermarking, Xin Zhong Dec 2018

Computational Intelligence In Steganography: Adaptive Image Watermarking, Xin Zhong

Dissertations

Digital image watermarking, as an extension of traditional steganography, refers to the process of hiding certain messages into cover images. The transport image, called marked-image or stego-image, conveys the hidden messages while appears visibly similar to the cover-image. Therefore, image watermarking enables various applications such as copyright protection and covert communication. In a watermarking scheme, fidelity, capacity and robustness are considered as crucial factors, where fidelity measures the similarity between the cover- and marked-images, capacity measures the maximum amount of watermark that can be embedded, and robustness concerns the watermark extraction under attacks on the marked-image. Watermarking techniques are often …


Efficient Machine Learning: Models And Accelerations, Zhe Li Dec 2018

Efficient Machine Learning: Models And Accelerations, Zhe Li

Dissertations - ALL

One of the key enablers of the recent unprecedented success of machine learning is the adoption of very large models. Modern machine learning models typically consist of multiple cascaded layers such as deep neural networks, and at least millions to hundreds of millions of parameters (i.e., weights) for the entire model. The larger-scale model tend to enable the extraction of more complex high-level features, and therefore, lead to a significant improvement of the overall accuracy. On the other side, the layered deep structure and large model sizes also demand to increase computational capability and memory requirements. In order to achieve …


Objective Assessment Of Machine Learning Algorithms For Speech Enhancement In Hearing Aids, Krishnan Parameswaran Dec 2018

Objective Assessment Of Machine Learning Algorithms For Speech Enhancement In Hearing Aids, Krishnan Parameswaran

Electronic Thesis and Dissertation Repository

Speech enhancement in assistive hearing devices has been an area of research for many decades. Noise reduction is particularly challenging because of the wide variety of noise sources and the non-stationarity of speech and noise. Digital signal processing (DSP) algorithms deployed in modern hearing aids for noise reduction rely on certain assumptions on the statistical properties of undesired signals. This could be disadvantageous in accurate estimation of different noise types, which subsequently leads to suboptimal noise reduction. In this research, a relatively unexplored technique based on deep learning, i.e. Recurrent Neural Network (RNN), is used to perform noise reduction and …


A Microscopic Simulation Laboratory For Evaluation Of Off-Street Parking Systems, Yun Yuan Dec 2018

A Microscopic Simulation Laboratory For Evaluation Of Off-Street Parking Systems, Yun Yuan

Theses and Dissertations

The parking industry produces an enormous amount of data every day that, properly analyzed, will change the way the industry operates. The collected data form patterns that, in most cases, would allow parking operators and property owners to better understand how to maximize revenue and decrease operating expenses and support the decisions such as how to set specific parking policies (e.g. electrical charging only parking space) to achieve the sustainable and eco-friendly parking.

However, there lacks an intelligent tool to assess the layout design and operational performance of parking lots to reduce the externalities and increase the revenue. To address …


Sensor-Based Human Activity Recognition Using Bidirectional Lstm For Closely Related Activities, Arumugam Thendramil Pavai Dec 2018

Sensor-Based Human Activity Recognition Using Bidirectional Lstm For Closely Related Activities, Arumugam Thendramil Pavai

Electronic Theses, Projects, and Dissertations

Recognizing human activities using deep learning methods has significance in many fields such as sports, motion tracking, surveillance, healthcare and robotics. Inertial sensors comprising of accelerometers and gyroscopes are commonly used for sensor based HAR. In this study, a Bidirectional Long Short-Term Memory (BLSTM) approach is explored for human activity recognition and classification for closely related activities on a body worn inertial sensor data that is provided by the UTD-MHAD dataset. The BLSTM model of this study could achieve an overall accuracy of 98.05% for 15 different activities and 90.87% for 27 different activities performed by 8 persons with 4 …


Transfer Learning With Deep Recurrent Neural Networks For Remaining Useful Life Estimation, Ansi Zhang, Honglei Wang, Shaobo Li, Yuxin Cui, Guanci Yang, Jianjun Hu Nov 2018

Transfer Learning With Deep Recurrent Neural Networks For Remaining Useful Life Estimation, Ansi Zhang, Honglei Wang, Shaobo Li, Yuxin Cui, Guanci Yang, Jianjun Hu

Faculty Publications

Prognostics, such as remaining useful life (RUL) prediction, is a crucial task in condition-based maintenance. A major challenge in data-driven prognostics is the difficulty of obtaining a sufficient number of samples of failure progression. However, for traditional machine learning methods and deep neural networks, enough training data is a prerequisite to train good prediction models. In this work, we proposed a transfer learning algorithm based on Bi-directional Long Short-Term Memory (BLSTM) recurrent neural networks for RUL estimation, in which the models can be first trained on different but related datasets and then fine-tuned by the target dataset. Extensive experimental results …


Sdnet2018: An Annotated Image Dataset For Non-Contact Concrete Crack Detection Using Deep Convolutional Neural Networks, Sattar Dorafshan, Robert J. Thomas, Marc Maguire Nov 2018

Sdnet2018: An Annotated Image Dataset For Non-Contact Concrete Crack Detection Using Deep Convolutional Neural Networks, Sattar Dorafshan, Robert J. Thomas, Marc Maguire

Civil and Environmental Engineering Faculty Publications

SDNET2018 is an annotated image dataset for training, validation, and benchmarking of artificial intelligence based crack detection algorithms for concrete. SDNET2018 contains over 56,000 images of cracked and non-cracked concrete bridge decks, walls, and pavements. The dataset includes cracks as narrow as 0.06 mm and as wide as 25 mm. The dataset also includes images with a variety of obstructions, including shadows, surface roughness, scaling, edges, holes, and background debris. SDNET2018 will be useful for the continued development of concrete crack detection algorithms based on deep convolutional neural networks (DCNNs), which are a subject of continued research in the field …


Datanet: Deep Learning Based Encrypted Network Traffic Classification In Sdn Home Gateway, Pan Wang, Feng Ye, Xuejiao Chen, Yi Qian Oct 2018

Datanet: Deep Learning Based Encrypted Network Traffic Classification In Sdn Home Gateway, Pan Wang, Feng Ye, Xuejiao Chen, Yi Qian

Department of Electrical and Computer Engineering: Faculty Publications

A smart home network will support various smart devices and applications, e.g., home automation devices, E-health devices, regular computing devices, and so on. Most devices in a smart home access the Internet through a home gateway (HGW). In this paper, we propose a software-defined network (SDN)-HGW framework to better manage distributed smart home networks and support the SDN controller of the core network. The SDN controller enables efficient network quality-of-service management based on real-time traffic monitoring and resource allocation of the core network. However, it cannot provide network management in distributed smart homes. Our proposed SDN-HGW extends the control to …


End-To-End Convolutional Neural Network Model For Gear Fault Diagnosis Based On Sound Signals, Yong Yao, Honglei Wang, Shaobo Li, Zhongnhao Liu, Gui Gui, Yabo Dan, Jianjun Hu Sep 2018

End-To-End Convolutional Neural Network Model For Gear Fault Diagnosis Based On Sound Signals, Yong Yao, Honglei Wang, Shaobo Li, Zhongnhao Liu, Gui Gui, Yabo Dan, Jianjun Hu

Faculty Publications

Currently gear fault diagnosis is mainly based on vibration signals with a few studies on acoustic signal analysis. However, vibration signal acquisition is limited by its contact measuring while traditional acoustic-based gear fault diagnosis relies heavily on prior knowledge of signal processing techniques and diagnostic expertise. In this paper, a novel deep learning-based gear fault diagnosis method is proposed based on sound signal analysis. By establishing an end-to-end convolutional neural network (CNN), the time and frequency domain signals can be fed into the model as raw signals without feature engineering. Moreover, multi-channel information from different microphones can also be fused …


Product Innovation Design Based On Deep Learning And Kansei Engineering, Huafeng Quan, Shaobo Li, Jianjun Hu Aug 2018

Product Innovation Design Based On Deep Learning And Kansei Engineering, Huafeng Quan, Shaobo Li, Jianjun Hu

Faculty Publications

Creative product design is becoming critical to the success of many enterprises. However, the conventional product innovation process is hindered by two major challenges: the difficulty to capture users’ preferences and the lack of intuitive approaches to visually inspire the designer, which is especially true in fashion design and form design of many other types of products. In this paper, we propose to combine Kansei engineering and the deep learning for product innovation (KENPI) framework, which can transfer color, pattern, etc. of a style image in real time to a product’s shape automatically. To capture user preferences, we combine Kansei …


Multi-Gpu Acceleration Of Iterative X-Ray Ct Image Reconstruction, Ayan Mitra Aug 2018

Multi-Gpu Acceleration Of Iterative X-Ray Ct Image Reconstruction, Ayan Mitra

McKelvey School of Engineering Theses & Dissertations

X-ray computed tomography is a widely used medical imaging modality for screening and diagnosing diseases and for image-guided radiation therapy treatment planning. Statistical iterative reconstruction (SIR) algorithms have the potential to significantly reduce image artifacts by minimizing a cost function that models the physics and statistics of the data acquisition process in X-ray CT. SIR algorithms have superior performance compared to traditional analytical reconstructions for a wide range of applications including nonstandard geometries arising from irregular sampling, limited angular range, missing data, and low-dose CT. The main hurdle for the widespread adoption of SIR algorithms in multislice X-ray CT reconstruction …


Comparison Of Deep Convolutional Neural Networks And Edge Detectors For Image-Based Crack Detection In Concrete, Sattar Dorafshan, Robert J. Thomas, Marc Maguire Aug 2018

Comparison Of Deep Convolutional Neural Networks And Edge Detectors For Image-Based Crack Detection In Concrete, Sattar Dorafshan, Robert J. Thomas, Marc Maguire

Civil and Environmental Engineering Faculty Publications

This paper compares the performance of common edge detectors and deep convolutional neural networks (DCNN) for image-based crack detection in concrete structures. A dataset of 19 high definition images (3420 sub-images, 319 with cracks and 3101 without) of concrete is analyzed using six common edge detection schemes (Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian) and using the AlexNet DCNN architecture in fully trained, transfer learning, and classifier modes. The relative performance of each crack detection method is compared here for the first time on a single dataset. Edge detection methods accurately detected 53–79% of cracked pixels, but they …


Real-Time Non-Contact Road Defect Detection Using Inexpensive Sensors, Zhao Xing Lim, Mohammad Jahanshahi, Tarutal Ghosh Mondal, Da Cheng, Shutao Wang, Mohammad K. Sweidan, Aanis Ahmad, Omar Hesham Abouhussein, Xi Chen Aug 2018

Real-Time Non-Contact Road Defect Detection Using Inexpensive Sensors, Zhao Xing Lim, Mohammad Jahanshahi, Tarutal Ghosh Mondal, Da Cheng, Shutao Wang, Mohammad K. Sweidan, Aanis Ahmad, Omar Hesham Abouhussein, Xi Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Road defects such as potholes, humps, and road cracks have become one of the main concerns for road and traffic safety worldwide. Pavement defect detection is crucial to ensure road safety. However, current solutions to this problem are either too time-consuming or too expensive to be employed large-scale. We propose a novel approach which has the ability to autonomously detect potholes in real-time using cost-effective sensors. Inexpensive sensors are mounted on a vehicle and a deep learning algorithm is used to identify road defects. The detection system is paired with a GPS and positional sensors to map the location of …


Apple Flower Detection Using Deep Convolutional Networks, Philipe A. Dias, Amy Tabb, Henry P. Medeiros Aug 2018

Apple Flower Detection Using Deep Convolutional Networks, Philipe A. Dias, Amy Tabb, Henry P. Medeiros

Electrical and Computer Engineering Faculty Research and Publications

To optimize fruit production, a portion of the flowers and fruitlets of apple trees must be removed early in the growing season. The proportion to be removed is determined by the bloom intensity, i.e., the number of flowers present in the orchard. Several automated computer vision systems have been proposed to estimate bloom intensity, but their overall performance is still far from satisfactory even in relatively controlled environments. With the goal of devising a technique for flower identification which is robust to clutter and to changes in illumination, this paper presents a method in which a pre-trained convolutional neural network …


Process Analytics From Passive Acoustic Emissions Monitoring During Fluidized Bed Pellet Coating In Pharmaceutical Manufacturing, Allan Carter Jun 2018

Process Analytics From Passive Acoustic Emissions Monitoring During Fluidized Bed Pellet Coating In Pharmaceutical Manufacturing, Allan Carter

Electronic Thesis and Dissertation Repository

Piezoelectric microphones were attached to a top spray fluidized bed to provide valuable process signatures. Relationships were developed between sound waves and conditions within the fluidized bed to relay critical quality and performance information. Deep learning analytics were used to extract valuable information from experimental data. Advancements in passive acoustic emissions monitoring will play a key role in optimizing pharmaceutical manufacturing pathways to ensure drug quality and performance.


Multi-Label Latent Spaces With Semi-Supervised Deep Generative Models, Rastin Rastgoufard May 2018

Multi-Label Latent Spaces With Semi-Supervised Deep Generative Models, Rastin Rastgoufard

University of New Orleans Theses and Dissertations

Expert labeling, tagging, and assessment are far more costly than the processes of collecting raw data. Generative modeling is a very powerful tool to tackle this real-world problem. It is shown here how these models can be used to allow for semi-supervised learning that performs very well in label-deficient conditions.

The foundation for the work in this dissertation is built upon visualizing generative models' latent spaces to gain deeper understanding of data, analyze faults, and propose solutions. A number of novel ideas and approaches are presented to improve single-label classification. This dissertation's main focus is on extending semi-supervised Deep Generative …


End-To-End Learning Framework For Circular Rna Classification From Other Long Non-Coding Rnas Using Multi-Modal Deep Learning., Mohamed Chaabane May 2018

End-To-End Learning Framework For Circular Rna Classification From Other Long Non-Coding Rnas Using Multi-Modal Deep Learning., Mohamed Chaabane

Electronic Theses and Dissertations

Over the past two decades, a circular form of RNA (circular RNA) produced from splicing mechanism has become the focus of scientific studies due to its major role as a microRNA (miR) ac tivity modulator and its association with various diseases including cancer. Therefore, the detection of circular RNAs is a vital operation for continued comprehension of their biogenesis and purpose. Prediction of circular RNA can be achieved by first distinguishing non-coding RNAs from protein coding gene transcripts, separating short and long non-coding RNAs (lncRNAs), and finally pre dicting circular RNAs from other lncRNAs. However, available tools to distinguish circular …


Design And Implementation Of A Domain Specific Language For Deep Learning, Xiao Bing Huang May 2018

Design And Implementation Of A Domain Specific Language For Deep Learning, Xiao Bing Huang

Theses and Dissertations

\textit {Deep Learning} (DL) has found great success in well-diversified areas such as machine vision, speech recognition, big data analysis, and multimedia understanding recently. However, the existing state-of-the-art DL frameworks, e.g. Caffe2, Theano, TensorFlow, MxNet, Torch7, and CNTK, are programming libraries with fixed user interfaces, internal representations, and execution environments. Modifying the code of DL layers or data structure is very challenging without in-depth understanding of the underlying implementation. The optimization of the code and execution in these tools is often limited and relies on the specific DL computation graph manipulation and scheduling that lack systematic and universal strategies. Furthermore, …


Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels Apr 2018

Comparative Study Of Deep Learning Models For Network Intrusion Detection, Brian Lee, Sandhya Amaresh, Clifford Green, Daniel Engels

SMU Data Science Review

In this paper, we present a comparative evaluation of deep learning approaches to network intrusion detection. A Network Intrusion Detection System (NIDS) is a critical component of every Internet connected system due to likely attacks from both external and internal sources. A NIDS is used to detect network born attacks such as Denial of Service (DoS) attacks, malware replication, and intruders that are operating within the system. Multiple deep learning approaches have been proposed for intrusion detection systems. We evaluate three models, a vanilla deep neural net (DNN), self-taught learning (STL) approach, and Recurrent Neural Network (RNN) based Long Short …


A Multi-Step Nonlinear Dimension-Reduction Approach With Applications To Bigdata, R. Krishnan, V. A. Samaranayake, Jagannathan Sarangapani Apr 2018

A Multi-Step Nonlinear Dimension-Reduction Approach With Applications To Bigdata, R. Krishnan, V. A. Samaranayake, Jagannathan Sarangapani

Mathematics and Statistics Faculty Research & Creative Works

In this paper, a multi-step dimension-reduction approach is proposed for addressing nonlinear relationships within attributes. In this work, the attributes in the data are first organized into groups. In each group, the dimensions are reduced via a parametric mapping that takes into account nonlinear relationships. Mapping parameters are estimated using a low rank singular value decomposition (SVD) of distance covariance. Subsequently, the attributes are reorganized into groups based on the magnitude of their respective singular values. The group-wise organization and the subsequent reduction process is performed for multiple steps until a singular value-based user-defined criterion is satisfied. Simulation analysis is …


Deep Learning Nuclei Detection In Digitized Histology Images By Superpixels, Sudhir Sornapudi, R. Joe Stanley, William V. Stoecker, Haidar Almubarak, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane R. Frazier Mar 2018

Deep Learning Nuclei Detection In Digitized Histology Images By Superpixels, Sudhir Sornapudi, R. Joe Stanley, William V. Stoecker, Haidar Almubarak, Rodney Long, Sameer Antani, George Thoma, Rosemary Zuna, Shelliane R. Frazier

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades.

Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network.

Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with …


Patent Keyword Extraction Algorithm Based On Distributed Representation For Patent Classification, Jie Hu, Shaobo Li, Yong Yao, Liya Yu, Guanci Yang, Jianjun Hu Feb 2018

Patent Keyword Extraction Algorithm Based On Distributed Representation For Patent Classification, Jie Hu, Shaobo Li, Yong Yao, Liya Yu, Guanci Yang, Jianjun Hu

Faculty Publications

Many text mining tasks such as text retrieval, text summarization, and text comparisons depend on the extraction of representative keywords from the main text. Most existing keyword extraction algorithms are based on discrete bag-of-words type of word representation of the text. In this paper, we propose a patent keyword extraction algorithm (PKEA) based on the distributed Skip-gram model for patent classification. We also develop a set of quantitative performance measures for keyword extraction evaluation based on information gain and cross-validation, based on Support Vector Machine (SVM) classification, which are valuable when human-annotated keywords are not available. We used a standard …


Deep Gaze Velocity Analysis During Mammographic Reading For Biometric Identification Of Radiologists, Hong-Jun Yoon, Folami Alamudun, Kathy Hudson, Garnetta Morin-Ducote, Georgia Tourassi Jan 2018

Deep Gaze Velocity Analysis During Mammographic Reading For Biometric Identification Of Radiologists, Hong-Jun Yoon, Folami Alamudun, Kathy Hudson, Garnetta Morin-Ducote, Georgia Tourassi

Journal of Human Performance in Extreme Environments

Several studies have confirmed that the gaze velocity of the human eye can be utilized as a behavioral biometric or personalized biomarker. In this study, we leverage the local feature representation capacity of convolutional neural networks (CNNs) for eye gaze velocity analysis as the basis for biometric identification of radiologists performing breast cancer screening. Using gaze data collected from 10 radiologists reading 100 mammograms of various diagnoses, we compared the performance of a CNN-based classification algorithm with two deep learning classifiers, deep neural network and deep belief network, and a previously presented hidden Markov model classifier. The study showed that …


Beef Cattle Instance Segmentation Using Mask R-Convolutional Neural Network, Mohammad Danish Jan 2018

Beef Cattle Instance Segmentation Using Mask R-Convolutional Neural Network, Mohammad Danish

Dissertations

Maintaining the cattle farm along with the wellbeing of every heifer has been the major concern in dairy farm. A robust system is required which can tackle the problem of continuous monitoring of cows. the computer vision techniques provide a new way to understand the challenges related to the identification and welfare of the cows. This paper presents a state-of-art instance segmentation mask RCNN algorithm to train and build a model on a very challenging cow dataset that is captured during the winter season. The dataset poses many challenges such as overlapping of cows, partial occlusion, similarity between cows and …


Adapt At Semeval-2018 Task 9: Skip-Gram Word Embeddings For Unsupervised Hypernym Discovery In Specialised Corpora, Alfredo Maldonado, Filip Klubicka Jan 2018

Adapt At Semeval-2018 Task 9: Skip-Gram Word Embeddings For Unsupervised Hypernym Discovery In Specialised Corpora, Alfredo Maldonado, Filip Klubicka

Other resources

This paper describes a simple but competitive unsupervised system for hypernym discovery. The system uses skip-gram word embeddings with negative sampling, trained on specialised corpora. Candidate hypernyms for an input word are predicted based on cosine similar- ity scores. Two sets of word embedding mod- els were trained separately on two specialised corpora: a medical corpus and a music indus- try corpus. Our system scored highest in the medical domain among the competing unsu- pervised systems but performed poorly on the music industry domain. Our approach does not depend on any external data other than raw specialised corpora.


Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai Jan 2018

Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai

Research outputs 2014 to 2021

For robots to attain more general-purpose utility, grasping is a necessary skill to master. Such general-purpose robots may use their perception abilities to visually identify grasps for a given object. A grasp describes how a robotic end-effector can be arranged to securely grab an object and successfully lift it without slippage. Traditionally, grasp detection requires expert human knowledge to analytically form the task-specific algorithm, but this is an arduous and time-consuming approach. During the last five years, deep learning methods have enabled significant advancements in robotic vision, natural language processing, and automated driving applications. The successful results of these methods …


Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz Jan 2018

Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz

Theses and Dissertations--Computer Science

Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree …


Smart Augmented Reality Instructional System For Mechanical Assembly, Ze-Hao Lai Jan 2018

Smart Augmented Reality Instructional System For Mechanical Assembly, Ze-Hao Lai

Masters Theses

"Quality and efficiency are pivotal indicators of a manufacturing company. Many companies are suffering from shortage of experienced workers across the production line to perform complex assembly tasks such as assembly of an aircraft engine. This could lead to a significant financial loss. In order to further reduce time and error in an assembly, a smart system consisting of multi-modal Augmented Reality (AR) instructions with the support of a deep learning network for tool detection is introduced. The multi-modal smart AR is designed to provide on-site information including various visual renderings with a fine-tuned Region-based Convolutional Neural Network, which is …


Estimating Left Ventricular Volume With Roi-Based Convolutional Neural Network, Feng Zhu Jan 2018

Estimating Left Ventricular Volume With Roi-Based Convolutional Neural Network, Feng Zhu

Turkish Journal of Electrical Engineering and Computer Sciences

The volume of the human left ventricular (LV) chamber is an important indicator for diagnosing heart disease. Although LV volume can be measured manually with cardiac magnetic resonance imaging (MRI), the process is difficult and time-consuming for experienced cardiologists. This paper presents an end-to-end segmentation-free method that estimates LV volume from MRI images directly. The method initially uses Fourier transform and a regression filter to calculate the region of interest that contains the LV chambers. Then convolutional neural networks are trained to estimate the end-diastolic volume (EDV) and end-systolic volume (ESV). The resulting models accurately estimate the EDV and ESV …


Deep Learning Based Brain Tumor Classification And Detection System, Ali̇ Ari, Davut Hanbay Jan 2018

Deep Learning Based Brain Tumor Classification And Detection System, Ali̇ Ari, Davut Hanbay

Turkish Journal of Electrical Engineering and Computer Sciences

The brain cancer treatment process depends on the physician's experience and knowledge. For this reason, using an automated tumor detection system is extremely important to aid radiologists and physicians to detect brain tumors. The proposed method has three stages, which are preprocessing, the extreme learning machine local receptive fields (ELM-LRF) based tumor classification, and image processing based tumor region extraction. At first, nonlocal means and local smoothing methods were used to remove possible noises. In the second stage, cranial magnetic resonance (MR) images were classified as benign or malignant by using ELM-LRF. In the third stage, the tumors were segmented. …