Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Series

Discipline
Keyword
Publication Year

Articles 871 - 900 of 992

Full-Text Articles in Engineering

Computer Simulation Of Three-Dimensional Mechanical Assemblies: Part I - General Formulation, Yong Fang, Frank W. Liou Jan 1993

Computer Simulation Of Three-Dimensional Mechanical Assemblies: Part I - General Formulation, Yong Fang, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In Part I of this paper, a dynamic modeling system for the simulation of three-dimensional mechanical assemblies is presented. With this simulation tool, a designer can interactively create an assembly of mechanical components ready for dynamic analysis. The modeling system presented in this paper include» the derivation of the equations of motion of spatial multi-body systems, and the formulation of the equations to model the associated collision detection and collision responses. Part II of this paper is to introduce the geometry modeling and computer simulation of 3D systems.


Neural Modeling And Control Of A Distillation Column, James Edward Steck, K. Krishnamurthy, Bruce M. Mcmillin, Gary G. Leininger Jul 1992

Neural Modeling And Control Of A Distillation Column, James Edward Steck, K. Krishnamurthy, Bruce M. Mcmillin, Gary G. Leininger

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Control of a nine-stage three-component distillation column is considered. The control objective is achieved using a neural estimator and a neural controller. The neural estimator is trained to represent the chemical process accurately, and the neural controller is trained to give an input to the chemical process which will yield the desired output. Training of both the neural networks is accomplished using a recursive least squares training algorithm implemented on an Intel iPSC/2 multicomputer (hypercube). Simulated results are presented for a numerical example.


Determining The Chemical Composition Of Cloud Condensation Nuclei, Allen L. Williams, Jane E. Rothert, Kent E. Mcclure, Darryl J. Alofs, Donald E. Hagen, Daniel R. White, A. R. Hopkins, Max B. Trueblood Feb 1992

Determining The Chemical Composition Of Cloud Condensation Nuclei, Allen L. Williams, Jane E. Rothert, Kent E. Mcclure, Darryl J. Alofs, Donald E. Hagen, Daniel R. White, A. R. Hopkins, Max B. Trueblood

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This second progress report describes the status of the project one and one-half years after the start. The goal of the project is to develop the instrumentation to collect cloud condensation nuclei (CCN) in sufficient amounts to determine their chemical composition, and to survey the CCN composition in different climates through a series of field measurements. Our approach to CCN collection is to first form droplets on the nuclei under simulated cloud humidity conditions, which is the only known method of identifying CCN from the background aerosol. Under cloud chamber conditions, the droplets formed become larger than the surrounding aerosol, …


A Complete Model Characterization Of Brushless Dc Motors, N. Hemati, Ming-Chuan Leu Jan 1992

A Complete Model Characterization Of Brushless Dc Motors, N. Hemati, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The authors address the modeling problem associated with brushless DC motors (BLDCMs) with nonuniform air gaps that operate in a range where magnetic saturation may exist. The mathematical model includes the effects of reluctance variations as well as magnetic saturation to guarantee proper modeling of the system. An experimental procedure is developed and implemented in a laboratory environment to identify the electromagnetic characteristics of a BLDCM in the presence of magnetic saturation. It is demonstrated that the modeling problem associated with the class of BLDCMs can be formulated in terms of mathematically modeling a set of multidimensional surfaces corresponding to …


Use Of Time Varying Dynamics In Neural Network To Solve Multi-Target Classification, S. N. Balakrishnan, J. Rainwater Jan 1992

Use Of Time Varying Dynamics In Neural Network To Solve Multi-Target Classification, S. N. Balakrishnan, J. Rainwater

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Several types of solutions exist for multiple target tracking. These techniques are computation-intensive and in some cases very difficult to operate online. The authors report on a backpropagation neural network which has been successfully used to identify multiple moving targets using kinematic data (time, range, range-rate and azimuth angle) from sensors to train the network. Preliminary results from simulated scenarios show that neural networks are capable of learning target identification for three targets during the time period used during training and a time period shortly after. This effective classification period can be extended by the use of networks in coordination …


Genericity And Singularities Of Robot Manipulators, Ming-Chuan Leu, D. K. Pai Jan 1992

Genericity And Singularities Of Robot Manipulators, Ming-Chuan Leu, D. K. Pai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The kinematic singularities of robot manipulators are studied from the point of view of the theory of singularities. The notion of a "generic'' kinematic map, whose singularities form smooth manifolds of prescribed dimension in the joint space of the manipulator, is examined. For three-joint robots, an equivalent algebraic condition for genericity using the Jacobian determinants is derived. This condition lends itself to symbolic computation and is sufficient for the study of decoupled manipulators. Orientation and translation singularities of manipulators are studied in detail. A complete characterization of orientation singularities of robots with any number of joints is given. The translation …


Hydration Behavior Of Laser Dye Aerosols Of Mixed Composition Having High Critical Supersaturations, Max B. Trueblood, Donald E. Hagen, Darryl J. Alofs Jan 1992

Hydration Behavior Of Laser Dye Aerosols Of Mixed Composition Having High Critical Supersaturations, Max B. Trueblood, Donald E. Hagen, Darryl J. Alofs

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This Study Concerns Aerosol Particles of Mixed Composition. the Particles Contain a Water Insoluble Core (Polystyrene Latex), Surrounded by a Water Soluble Shell (Various Fluorescent Dyes). a Collison Nebulizer and an Electrostatic Aerosol Classifier Are Used to Prepare the Aerosol; its Critical Supersaturation Spectrum is Measured with a Diffusion Cloud Chamber. Experiments Were Done using Four Different Dyes (Disodium Fluorescein, Sulforhodamine 640, Sulforhodamine B and Rhodamine 560 Chloride) with Five Different Polystyrene Latex Sphere Sizes. the Results Indicate that a Kohler-Type Behavior is Obeyed. This Technique of Putting a Soluble Coating Onto an Insoluble Core is Found to Be a …


Moving Object Recognition And Guidance Of Robots Using Neural Networks, Abhijit Neogy, S. N. Balakrishnan, Cihan H. Dagli Jan 1992

Moving Object Recognition And Guidance Of Robots Using Neural Networks, Abhijit Neogy, S. N. Balakrishnan, Cihan H. Dagli

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The design of a robust guidance system for a robot is discussed. The two major tasks for this guidance system are the online recognition of a moving object invariant to rotation and translation, and tracking the moving object using a neural-network-driven vision system. This system included computer software ported to the IBM PC and interfaced with an IBM 7535 robot. The operation of this guidance system involved recognition of a moving object and the ability to track it till the robot and effector was in close proximity of the object. It was found that the robot was able to track …


Machining Of Composite Materials. Part I: Traditional Methods, Serge Abrate, D. A. Walton Jan 1992

Machining Of Composite Materials. Part I: Traditional Methods, Serge Abrate, D. A. Walton

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Composite materials are more difficult to machine than metals mainly because they are anisotropic, non-homogeneous and their reinforcing fibers are very abrasive. During machining, defects are introduced into the workpiece, and tools wear rapidly. Traditional machining techniques such as drilling or sawing can be used with proper tool design and operating conditions. A review of traditional machining methods applied to organic and metal matrix composites is presented in this article. The use of non-traditional machining methods such as waterjet, laser and ultrasonic machining will be discussed in the second part. © 1992.


Machining Of Composite Materials. Part Ii: Non-Traditional Methods, Serge Abrate, D. Walton Jan 1992

Machining Of Composite Materials. Part Ii: Non-Traditional Methods, Serge Abrate, D. Walton

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Machining of composite materials is difficult due to the heterogeneity and heat sensitivity of the material and the high abrasiveness of the reinforcing fibers. This results in damage being introduced into the workpiece and very high tool wear. The use of traditional machining methods was reviewed in Part I of this paper. Here new methods are considered: laser, waterjet, electro-discharge, electro-chemical spark, and ultrasonic machining. These various techniques have been applied to organic matrix composites with aramid, glass, graphite fiber reinforcement but also to metal matrix and ceramic matrix composites. © 1992.


Extension Of Vlasov’S Semi-Membrane Theory To Reinforced Composite Shells, Victor Birman Jan 1992

Extension Of Vlasov’S Semi-Membrane Theory To Reinforced Composite Shells, Victor Birman

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Governing equations for the statics and dynamics of reinforced composite shells are developed based on Vlasov's semi-membrane shell theory. These equations have closed-form solutions illustrated for buckling and free vibration problems. The buckling solution converges to the known result for unstiffened isotropic shells. © 1992 by ASME.


Consideration Of Phase Transformations In The Study Of Shear Bands In A Dynamically Loaded Steel Block, Z. G. Zhu, R. C. Batra Jan 1992

Consideration Of Phase Transformations In The Study Of Shear Bands In A Dynamically Loaded Steel Block, Z. G. Zhu, R. C. Batra

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We study plane strain thermomechanical deformations of a square block made of steel and model a material defect in it by a rigid non-heat-conducting ellipsoidal inclusion located at the center of the block. The boundaries of the block are presumed to be thermally insulated, and its top and bottom surfaces compressed vertically at a prescribed rate. The loading pulse is assumed to be made up of three parts; an initial segment in which the speed increases from zero to the steady value, the steady part, and the third part in which the speed decreases gradually to zero and is maintained …


Effect Of Temperature On The Ultimate Strength And Modulus Of Whisker‐Reinforced Ceramics, Douglas R. Carroll, Lokeswarappa R. Dharani Jan 1992

Effect Of Temperature On The Ultimate Strength And Modulus Of Whisker‐Reinforced Ceramics, Douglas R. Carroll, Lokeswarappa R. Dharani

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Whiskers are a very attractive means of reinforcing a ceramic material. It has been shown that the whiskers dramatically improve the ultimate strength and modulus of the materials at room temperature. However, recent studies indicate that at high temperatures the improvement is less pronounced, or there is no improvement at all. In this paper a model is developed to explain why the properties are degraded at high temperature. The parameters which seem most important for high‐temperature performance are the coefficients of thermal expansion and Poisson's ratios for the constituents, the heat treatment temperature, and the coefficient of friction between the …


Analysis Of Shear Bands In Simple Shearing Deformations Of Nonpolar And Dipolar Viscoplastic Materials, R. C. Batra Jan 1992

Analysis Of Shear Bands In Simple Shearing Deformations Of Nonpolar And Dipolar Viscoplastic Materials, R. C. Batra

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During the past few years, we have studied numerically the initiation and growth of shear bands in nonpolar and dipolar viscoplastic materials being deformed in simple shear, and in nonpolar materials undergoing plane strain deformations. We summarize here our work for the former problem. © 1992 American Society of Mechanical Engineers.


Decoupled Dynamics For Control And Estimation, S. N. Balakrishnan Jan 1991

Decoupled Dynamics For Control And Estimation, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Decoupling of the dynamical equations in polar coordinates is used to develop a control scheme for use in target-intercept problems with passive measurements. By defining a pseudo control variable in the radial coordinate, the radial dynamics is made independent of the transverse dynamics. After solving for the radial control, the transverse control is determined through solutions to a two-point boundary value problem. Numerical results from a six degree-of-freedom simulation which used the decoupled control indicate that it is better than the completely Cartesian coordinate control for most of the cases considered. Decoupled control, though, is obtained iteratively through a two-point …


Hierarchical Neurocontroller Architecture For Intelligent Robotic Manipulation, Xavier J. R. Avula, Luis C. Rabelo Jan 1991

Hierarchical Neurocontroller Architecture For Intelligent Robotic Manipulation, Xavier J. R. Avula, Luis C. Rabelo

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A hierarchical neurocontroller architecture consisting of two artificial neural network systems for the manipulation of a robotic arm is presented. The higher-level neural system participates in the delineation of the robot arm workspace and coordinates transformation and the motion decision-making process. The lower one provides the correct sequence of control actions. The capabilities, including speed, adaptability, and computational efficiency, of the developed architecture are illustrated by an example.


Petri Net Modeling Of A Flexible Assembly Station For Printed Circuit Boards, M. Zhou, Ming-Chuan Leu Jan 1991

Petri Net Modeling Of A Flexible Assembly Station For Printed Circuit Boards, M. Zhou, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Petri net modeling approaches are presented for a flexible workstation for automatic assembly of printed circuit boards. In order to improve the productivity of such a system, the building of mathematical models is a crucial step. Concentrating on the operational aspects, the authors construct ordinary and temporal Petri net models for the AT&T FWS-200 physical flexible workstation. Three outcomes follow from such models. First, designers can have a better understanding of concurrency, synchronization, mutual exclusion, and sequential relations involved in the system control from the graphical representations of Petri nets. Second, the performance analysis of system operations under different settings …


Impact On Laminated Composite Materials, Serge Abrate Jan 1991

Impact On Laminated Composite Materials, Serge Abrate

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laminated composite materials are used extensively in aerospace and other applications. With their high specific modulus, high specific strength, and the capability of being tailored for a specific application, these materials offer definite advantages compared to more traditional materials. However, their behavior under impact is a concern, since impacts do occur during manufacture, normal operations, or maintenance. The situation is critical for impacts which induce significant internal damage, undetectable by visual inspection, that cause large drops in the strength and stability of the structure. Impact dynamics, including the motion of both the impactor and the target and the force developed …


Matrix Cracking In Laminated Composites: A Review, Serge Abrate Jan 1991

Matrix Cracking In Laminated Composites: A Review, Serge Abrate

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This article presents an overview of the problem of matrix cracking in laminated composite materials. The parameters governing the onset and accumulation of internal damage under several types of loadings are reviewed. The analysis of laminates with matrix cracks can be performed using a shear-lag model, variational, elasticity, finite element or finite difference approaches. Prediction of further cracking is based on either a fracture mechanics approach or a probabilistic failure strength theory. Continuum damage mechanics are used by some investigators to model the behavior of the cracked laminate. Recent developments in this area are summarized here, and suggestions for future …


Dynamic Adiabatic Shear Band Development In A Bimetallic Body Containing A Void, R. C. Batra, Z. G. Zhu Jan 1991

Dynamic Adiabatic Shear Band Development In A Bimetallic Body Containing A Void, R. C. Batra, Z. G. Zhu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We study the problem of the initiation and subsequent growth of a shear band in a thermally softening viscoplaslic prismatic body of square cross-section and containing two symmetrically placed thin layers of a different viscoplastic material and an elliptical void at the center. The yield stress of the material of the thin layer in a quasistatic simple compression test is taken to be either five times or one-fifth that of the matrix material. The body is deformed in plane strain compression at a nominal strain rate of 5.000 s '. These deformations are assumed to be symmetrical about the centroidal …


Analysis Of Shear Banding In Plane Strain Compression Of A Bimetallic Thermally Softening Viscoplastic Body Containing An Elliptical Void, Z. G. Zhu, R. C. Batra Jan 1991

Analysis Of Shear Banding In Plane Strain Compression Of A Bimetallic Thermally Softening Viscoplastic Body Containing An Elliptical Void, Z. G. Zhu, R. C. Batra

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We study plane strain thermomechanical deformations of a prismatic viscoplastic body of square cross-section and deformed at a nominal strain-rate of 5000 s-1. The body has two thin layers placed symmetrically about the horizontal centroidal axis and an elliptical void at the center. The major axis of the void coincides with the vertical centroidal axis and also with the direction of loading. The layer material differs from that of the body in only the value of the yield stress in a quasistatic simple compression test. The yield stress for the layer material is taken to be either one-fifth or five …


Thermoelastic Problems Of Multilayered Cylinders, Victor Birman May 1990

Thermoelastic Problems Of Multilayered Cylinders, Victor Birman

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Thermoelastic problems of long multilayered cylinders manufactured from isotropic materials are considered. The steady-state thermal field corresponding to a constant difference between temperature outside and inside the assembly is used in the analysis. Both the case of a hollow cylinder and that of a solid multilayered assembly are discussed. A closed-form exact solution is shown for an arbitrary number of layers if the properties of constituent materials remain unaffected by temperature. Various strategies leading to an analytical solution are proposed for the case where material properties depend on temperature. The stresses in a dual-coated optical fiber subject to a uniform …


Planning Optimal Robot Trajectories By Cell Mapping, W. H. Zhu, Ming-Chuan Leu Jan 1990

Planning Optimal Robot Trajectories By Cell Mapping, W. H. Zhu, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A cell-mapping method is introduced for planning global trajectories of robotic manipulators in cases where the cell space is composed of combination pairs of plane cells. With the proposed method, optimal trajectory problems in the free field and in the obstacle-constrained field are studied. Two numerical examples are given to show the obtained optimal trajectories and controls.


Robust Nonlinear Control Of Brushless Dc Motors In The Presence Of Magnetic Saturation, N. Hemati, J. S. Thorp, Ming-Chuan Leu Jan 1990

Robust Nonlinear Control Of Brushless Dc Motors In The Presence Of Magnetic Saturation, N. Hemati, J. S. Thorp, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A robust control law is derived and examined for a direct-drive robot arm driven by a brushless DC motor (BLDCM). The complete dynamics of the motor and its interaction with the robot arm are accounted for. This is important, since in a direct-drive servo system the torque generated by the motor is directly transmitted to the load. Effects of magnetic saturation as well as reluctance variations are accounted for, in order to ensure accuracy. The effectiveness of the method is examined through computer simulations. The computational complexity of the overall control scheme is such that it can be readily used …


Use Of Energy In Data-Track Association And State Estimation In Multitarget-Multisensor Problems, S. N. Balakrishnan, H. Park Jan 1990

Use Of Energy In Data-Track Association And State Estimation In Multitarget-Multisensor Problems, S. N. Balakrishnan, H. Park

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A coarse test and a fine test have been formulated for use in multiple sensor-multiple target data-track association. Various forms of energies are used in these tests to pick the proper data to be associated with any target. Numerical experiments which involve the use of a decentralized Kalman filter scheme are presented. The experiments show the effectiveness of the two tests


A Complete Model Characterization Of Brushless Dc Motors, N. Hemati, Ming-Chuan Leu Jan 1990

A Complete Model Characterization Of Brushless Dc Motors, N. Hemati, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The modeling problem associated with brushless DC motors (BLDCMs) with nonuniform air gaps which operate in a range where magnetic saturation may exist is addressed. The mathematical model, includes the effects of reluctance variations and magnetic saturation to guarantee proper modeling of the system. An experimental procedure is developed and implemented in a laboratory environment to identify the electromagnetic characteristics of a BLDCM in the presence of magnetic saturation. It is demonstrated that the modeling problem associated with this class of BLDCM can be formulated in terms of mathematically modeling a set of multidimensional surfaces corresponding to the electromagnetic torque …


Robust Nonlinear Control Of Brushless Dc Motors For Direct-Drive Robotic Applications, N. Hemati, J. S. Thorp, Ming-Chuan Leu Jan 1990

Robust Nonlinear Control Of Brushless Dc Motors For Direct-Drive Robotic Applications, N. Hemati, J. S. Thorp, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The control problem associated with brushless DC motors (BLDCMs) for direct-drive robotic applications is considered. In order to guarantee the high-performance operation of BLDCMs in such applications, the effects of reluctance variations and magnetic saturation are accounted for in the model. Such a BLDCM model constitutes a highly coupled and nonlinear dynamic system. Using the transformation theory of nonlinear systems, a feedback control law, which is shown to compensate for the system nonlinearities, is derived. Conditions under which such a control law is possible are presented. The need for the derivation of explicit commutation strategies is eliminated, resulting in reduction …


A Differential Equation Approach To Swept Volumes, Ming-Chuan Leu, Denis Blackmore Jan 1990

A Differential Equation Approach To Swept Volumes, Ming-Chuan Leu, Denis Blackmore

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An approach to the analysis of swept volumes is introduced. It is shown that every smooth Euclidean motion or sweep, can be identified with a first-order, linear, ordinary differential equation. This sweep differential equation provides useful insights into the topological and geometrical nature of the swept volume of an object. A certain class, autonomous sweeps, is identified by the form of the associated differential equation, and several properties of the swept volumes of the members of this class are analyzed. The results are applied to generate swept volumes for a number of objects. Implementation of the sweep differential equation approach …


A Study Of The Hydration Properties Of Selected Laser Dye Aerosols Including Continuous-Flow Parallel Plate And Alternating-Gradient Thermal Diffusion Cloud Chamber Measurements In The High Supersaturation Regime, Donald E. Hagen, Max B. Trueblood, Darryl J. Alofs Jan 1990

A Study Of The Hydration Properties Of Selected Laser Dye Aerosols Including Continuous-Flow Parallel Plate And Alternating-Gradient Thermal Diffusion Cloud Chamber Measurements In The High Supersaturation Regime, Donald E. Hagen, Max B. Trueblood, Darryl J. Alofs

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Hydration Behavior of Aerosols made Up of Various Fluorescent Dyes when Exposed to Water Saturation or Supersaturated Conditions Has Been Studied. Critical Supersaturation Spectra Are Reported. the Dyes Are Found to Behave as High Molecular Weight Ionic Compounds that Obey Kohler Theory. their Relevant Kohler Parameters Are Measured. This Study Makes Use of and Compares Results from the Isothermal Hazecontinuous-Flowand Alternating-Gradient Thermal Diffusion Cloud Chambers. the Ability of the Continuous-Flow Thermal Diffusion Chamber to Operate Correctly at High Supersaturations is Shown. © 1990 Elsevier Science Publishing Co., Inc.


Combined Solar And Internal Load Effects On Selection Of Heat Reclaim-Economizer Hvac Systems, Harry J. Sauer, Ronald Hunter Howell, Zijie Wang Jan 1990

Combined Solar And Internal Load Effects On Selection Of Heat Reclaim-Economizer Hvac Systems, Harry J. Sauer, Ronald Hunter Howell, Zijie Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would …