Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Model Predictive Control With A Rigorous Model Of A Solid Oxide Fuel Cell, Lee T. Jacobsen, John Hedengren Jul 2013

Model Predictive Control With A Rigorous Model Of A Solid Oxide Fuel Cell, Lee T. Jacobsen, John Hedengren

Faculty Publications

Degradation of Solid Oxide Fuel Cells (SOFCs) can be minimized by maintaining reliability parameters during load changes. These reliability parameters are critical to maintain power generation efficiency over an extended life of the SOFC. For SOFCs to be commercially viable, the life must exceed 20,000 hours for load following applications. This is not yet achieved because transient stresses damage the fuel cell and degrade the performance over time. This study relates the development of a dynamic model for SOFC systems in order to predict optimal manipulated variable moves along a prediction horizon. The model consists of hundreds of states and …


Micro Modeling Study Of Cathode/Electrolyte Interfacial Stresses For Solid Oxide Fuel Cells, Xinfang Jin, Xingjian Xue May 2013

Micro Modeling Study Of Cathode/Electrolyte Interfacial Stresses For Solid Oxide Fuel Cells, Xinfang Jin, Xingjian Xue

Faculty Publications

Delamination of the cathode/electrolyte interface is an important degradation phenomenon in solid oxide fuel cells (SOFCs). While the thermal stress has been widely recognized as one of the major reasons for such delamination failures, the role of chemical stress does not receive too much attention. In this paper, a micro-model is developed to study the cathode/electrolyte interfacial stresses, coupling oxygen ion transport process with structural mechanics. Results indicate that the distributions of chemical stress are very complicated at the cathode/electrolyte interface and show different patterns from those of thermal stress. The maximum principal stresses take place at the cathode/electrolyte interface …


Atomic Layer Deposition On Porous Materials: Problems With Conventional Approaches To Catalyst And Fuel Cell Electrode Preparation, Tzia Ming Onn, Rainer Küngas, Paolo Fornasiero, Kevin Huang, Raymond J. Gorte Mar 2013

Atomic Layer Deposition On Porous Materials: Problems With Conventional Approaches To Catalyst And Fuel Cell Electrode Preparation, Tzia Ming Onn, Rainer Küngas, Paolo Fornasiero, Kevin Huang, Raymond J. Gorte

Faculty Publications

Atomic layer deposition (ALD) offers exciting possibilities for controlling the structure and composition of surfaces on the atomic scale in heterogeneous catalysts and solid oxide fuel cell (SOFC) electrodes. However, while ALD procedures and equipment are well developed for applications involving flat surfaces, the conditions required for ALD in porous materials with a large surface area need to be very different. The materials (e.g., rare earths and other functional oxides) that are of interest for catalytic applications will also be different. For flat surfaces, rapid cycling, enabled by high carrier-gas flow rates, is necessary in order to rapidly grow thicker …