Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Empirical Fragility Functions And Numerical Parametric Study For Buckling Of Steel Grain Bins Under High Wind Loads, Andrew Ruder Dec 2022

Empirical Fragility Functions And Numerical Parametric Study For Buckling Of Steel Grain Bins Under High Wind Loads, Andrew Ruder

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

While rural infrastructure is critical to the agricultural industry, it has been historically more susceptible to damage and slower to recover following natural disasters than its urban and suburban counterparts. This has been made evident most recently by the events of the August 10, 2020, derecho in which rural regions in Iowa were among the hardest hit areas with sustained windspeeds exceeding 120 mph. Among the most frequently damaged structures in this event were corrugated steel grain bins, which farmers and co-ops use to dry and store certain commodities. Unlike most other critical structures, steel grain bins are not designed …


Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi Sep 2022

Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi

Department of Mechanical and Materials Engineering: Faculty Publications

Lightweight foam sandwich structures have excellent energy absorption capacity, combined with good mechanical properties and low density. The main goal of this study is to test the application of an innovative hybrid sandwich protective device in an offshore wind turbine (OWT). The results are useful for offshore structure applications. Different lightweight materials (aluminum foam, agglomerated cork, and polyurethane foam) were investigated using experimental tests and numerical simulations. Closed-cell aluminum foam showed the best performance in terms of the energy absorption capacity during an impact. As such, a Metallic Foam Shell (MFS) device was proposed for the fender of offshore wind …


Comparative Study Of Tapered Versus Conventional Cylindrical Balloon For Stent Implantation In Stenotic Tapered Artery, Xiang Shen, Jiabao Jiang, Hongfei Zhu, Kaikai Lu, Pengfei Dong, Linxia Gu Aug 2022

Comparative Study Of Tapered Versus Conventional Cylindrical Balloon For Stent Implantation In Stenotic Tapered Artery, Xiang Shen, Jiabao Jiang, Hongfei Zhu, Kaikai Lu, Pengfei Dong, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The natural tapering of coronary arteries often creates a dilemma for optimal balloon sizing during stenting. The influence of different balloon types, namely, a tapered balloon and a conventional cylindrical balloon, on the mechanical performance of the stent as well as arterial mechanics was investigated via the finite element method. Stent free-expansion and stent deployment in a stenotic tapered artery were investigated numerically. The biomechanical behavior of the two balloon types was compared in terms of stent foreshortening, stent deformation, stent stress distribution, and arterial wall stress distribution. Results indicate that balloon types affect the transient behavior of the stent …


Fragility Functions Of Manufactured Houses Under Earthquake Loads, Shuyah Tani Aurore Ouoba Jul 2021

Fragility Functions Of Manufactured Houses Under Earthquake Loads, Shuyah Tani Aurore Ouoba

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Manufactured homes are factory-built homes made of wooden structural members, then transported and installed on a given site. Manufactured housing is used in many countries, such as in Australia, and in New Zealand but remain mostly popular in the United States. In 2020, nearly 22 million people were estimated to live in manufactured homes in the United States, with an increase of more than fifty percent in the shipment over the past seven years. However, performance observations from the last decades have shown the vulnerability of manufactured homes to extreme events, like windstorms and earthquakes. Damage assessments and post-event evaluations …


Perturbed Stress Field Of The Human Lens Capsule After Cataract Surgery, Kurt Ameku, Caleb Berggren, Ryan M. Pedrigi Apr 2020

Perturbed Stress Field Of The Human Lens Capsule After Cataract Surgery, Kurt Ameku, Caleb Berggren, Ryan M. Pedrigi

UCARE Research Products

Current modeling of the human lens capsule has been focused on the mechanism of accommodation and its decline with age, but few studies have modeled the effects of cataract surgery and quantified the altered mechanical environment introduced by the procedure. The goal of this study is to develop the first fully 3-D finite element model of the post-surgical human lens capsule with an implanted device in order to characterize lens capsule mechanics after cataract surgery. The model demonstrates a highly perturbed stress field compared to the native state, which we hypothesize is the primary driving force behind the long-term errant …


Long-Term Performance Evaluation Of Nudeck In Kearney East Bypass, George Morcous, Marc Maguire Dec 2019

Long-Term Performance Evaluation Of Nudeck In Kearney East Bypass, George Morcous, Marc Maguire

Nebraska Department of Transportation: Research Reports

The Kearney East Bypass bridge is the first project that implements the newly developed precast concrete deck system (known as 2nd generation NUDECK). The new system consists of full-depth full-width precast prestressed concrete deck panels that are 12 ft (3.66 m) long each. The panels have covered shear pockets at 4 ft (1.22 m) spacing on each girder line to host clustered shear connectors that are adjustable in height. Narrow unreinforced transverse joints are used to eliminate the need for deck overlay. Also, deck panels are post-tensioned in the longitudinal direction using a new post-tensioning system that eliminates the need …


Performance Evaluation Of Inverted Tee (It) Bridge System, Garrett P. Martindale, Daniel Watson, Antony Mohsen Kamal Masoud Kodsy, Mostafa Abo El-Khier, Richard L. Wood, George Morcous Aug 2019

Performance Evaluation Of Inverted Tee (It) Bridge System, Garrett P. Martindale, Daniel Watson, Antony Mohsen Kamal Masoud Kodsy, Mostafa Abo El-Khier, Richard L. Wood, George Morcous

Nebraska Department of Transportation: Research Reports

The Inverted Tee (IT) girder bridge system was originally developed in 1996 by the University of Nebraska–Lincoln (UNL) researchers and Nebraska Department of Transportation (NDOT) engineers. This bridge system currently accounts for over 110 bridges in Nebraska used for both state highways and local county roads. Extensive longitudinal and transverse deck cracking have been observed and noted in numerous bridge inspection reports. Since the IT girder bridge system is relatively new, limited data and knowledge exist on its structural performance and behavior. This study evaluates the IT girder bridge system by conducting twenty field observations as well as recording accelerometer, …


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy Jul 2019

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process …


Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy Apr 2018

Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The term “hybrid” has been widely applied to many areas of manufacturing. Naturally, that term has found a home in additive manufacturing as well. Hybrid additive manufacturing or hybrid-AM has been used to describe multi-material printing, combined machines (e.g., deposition printing and milling machine center), and combined processes (e.g., printing and interlayer laser re-melting). The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing paradigm. This work focuses on hybrid-AM processes, which are defined as the use of additive manufacturing (AM) with one …


Tissue Stresses In Stented Coronary Arteries With Different Geometries: Effect Of The Relation Between Stent Length And Lesion Length, Xiang Shen, Song Ji, Yong-Quan Deng, Hong-Fei Zhu, Jia-Bao Jiang, Linxia Gu Jan 2018

Tissue Stresses In Stented Coronary Arteries With Different Geometries: Effect Of The Relation Between Stent Length And Lesion Length, Xiang Shen, Song Ji, Yong-Quan Deng, Hong-Fei Zhu, Jia-Bao Jiang, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In-stent restenosis after stent deployment remains an obstruction in the long-term benefits of stenting. This study sought to investigate the influence of the relation between stent length and lesion length on the mechanics of the arterial wall with different geometries, including straight and tapered vessels. Results showed that when the length of the stent was longer than the lesion length, the maximum stress in plaque and vessel increased as the length of stent increased. When the length of the stent was shorter than the lesion length, the vessel stress induced by stent inflation was lower; both ends of the stenosis …


Phase I Evaluation Of Selected Concrete Material Models In Ls-Dyna, Bradley J. Winkelbauer Dec 2015

Phase I Evaluation Of Selected Concrete Material Models In Ls-Dyna, Bradley J. Winkelbauer

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Numerous roadside safety systems are configured with reinforced concrete materials, such as bridge railings, median barriers, and roadside parapets. These protective barrier systems are intended to safely contain and redirect errant vehicles as well as prevent impacts into hazardous fixed objects or other geometric features. The analysis and design of these structures may involve impact simulation with finite element software, like LS-DYNA, which includes multiple concrete material models. For such investigations, limited guidance is available for selecting preferred concrete material models and determining appropriate values for specific parameters. This Phase I study investigated the viability and performance of existing concrete …


Prediction Of The Thermomechanical Behavior Of Particle-Reinforced Metal Matrix Composites, Yi Hua, Linxia Gu Jan 2013

Prediction Of The Thermomechanical Behavior Of Particle-Reinforced Metal Matrix Composites, Yi Hua, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this paper was to predict the thermomechanical behavior of 2080 aluminum alloy reinforced with SiC particles using the Mori–Tanaka theory combined with the finite element method. The influences of particle volume fraction, stiffness, aspect ratio and orientation were examined in terms of effective Young’s modulus, Poisson’s ratio and coefficient of thermal expansion (CTE) of the composite. The microstructure induced local stress and strain field was obtained through the numerical models of the representative volume element. Results suggested that particle volume fraction had significant impact on the effective Young’s modulus, Poisson’s ratio and CTE of the composite. Stiffer …


The Influence Of Heterogeneous Meninges On The Brain Mechanics Under Primary Blast Loading, Linxia Gu, Mehdi S. Chafi, Shailesh Ganpule, Namas Chandra Apr 2012

The Influence Of Heterogeneous Meninges On The Brain Mechanics Under Primary Blast Loading, Linxia Gu, Mehdi S. Chafi, Shailesh Ganpule, Namas Chandra

Department of Mechanical and Materials Engineering: Faculty Publications

In the modeling of brain mechanics subjected to primary blast waves, there is currently no consensus on how many biological components to be used in the brain–meninges–skull complex, and what type of constitutive models to be adopted. The objective of this study is to determine the role of layered meninges in damping the dynamic response of the brain under primary blast loadings. A composite structures composed of eight solid relevant layers (including the pia, cerebrospinal fluid (CSF), dura maters) with different mechanical properties are constructed to mimic the heterogeneous human head. A hyper-viscoelastic material model is developed to better represent …


Arterial Wall Mechanics And Clinical Implications After Coronary Stenting: Comparisons Of Three Stent Designs, Linxia Gu, Shijia Zhao, Stacey R. Froemming Jan 2012

Arterial Wall Mechanics And Clinical Implications After Coronary Stenting: Comparisons Of Three Stent Designs, Linxia Gu, Shijia Zhao, Stacey R. Froemming

Department of Mechanical and Materials Engineering: Faculty Publications

The goal of this work is to quantitatively assess the relationship between the reported restenosis rates and stent induced arterial stress or strain parameters through finite element method. The impact of three stent designs (Palmaz–Schatz stent, Express stent, and Multilink Vision stent) on the arterial stress distributions were characterized. The influences of initial stent deployment location, stent-tissue friction, and plaque properties on the arterial stresses were also investigated. Higher arterial stresses were observed at the proximal end of the plaque. The Multilink–Vision stent induced lesser stress concentrations due to the high stiffness of the Cobalt Chromium material and thinner strut …


Finite Element Analysis Of Cracks In Aging Aircraft Structures With Bonded Composite-Patch Repairs, Linxia Gu, Ananth Ram Mahanth Kasavajhala, Shijia Zhao Jan 2010

Finite Element Analysis Of Cracks In Aging Aircraft Structures With Bonded Composite-Patch Repairs, Linxia Gu, Ananth Ram Mahanth Kasavajhala, Shijia Zhao

Department of Mechanical and Materials Engineering: Faculty Publications

Bonded composite-patch repair has been used to transfer load from cracked structures to the reinforcement such that subsequent crack propagation is reduced. In this study,the mechanical behavior of a single edge v-notch A17075-T6 plate repaired with 1-ply and 4-ply composite patches was investigated through the finite element method. Contour integral method was used to define and evaluate the stress intensity factors at the crack tip. The effect of the adhesive epoxy film, patch material, thickness and ply orientations on the evolution of the stress intensity factor (SIF) of the repaired structure was examined. The results indicated that the SIF of …


Finite Element Analysis Of Covered Microstents, Linxia Gu, Swadeshmukul Santra, Robert A. Mericle, Ashok V. Kumar Jun 2005

Finite Element Analysis Of Covered Microstents, Linxia Gu, Swadeshmukul Santra, Robert A. Mericle, Ashok V. Kumar

Department of Mechanical and Materials Engineering: Faculty Publications

Currently available neuroendovascular devices are inadequate for effective treatment of many wide-necked or fusiform intracranial aneurysms and intracranial carotid-cavernous fistulae (CCF). Placing a covered microstent across the intracranial aneurysm neck and CCF rent could restore normal vessel morphology by preventing blood flow into the aneurysm lumen or CCF rent. To fabricate covered microstents, our research group has developed highly flexible ultra thin (~150 μm) silicone coverings and elastomerically captured them onto commercially available metal stents without stitching. Preliminary in vivo studies were conducted by placing these covered microstents in the common carotid artery of rabbits. The feasibility of using covered …


Finite Element Modeling And Experimental Validation Of Cooling Rates Of Large Ready-To-Eat Meat Products In Small Meat-Processing Facilities, A. Amézquita, L. Wang, Curtis L. Weller Jan 2005

Finite Element Modeling And Experimental Validation Of Cooling Rates Of Large Ready-To-Eat Meat Products In Small Meat-Processing Facilities, A. Amézquita, L. Wang, Curtis L. Weller

Biological Systems Engineering: Papers and Publications

A two−dimensional axisymmetric transient heat conduction model was developed to simulate air chilling of large ready−to−eat meat products of ellipsoidal shape. A finite element scheme, using 1,600 linear triangular elements with 861 nodes, was implemented in Matlab 6.5 to solve the model. The model considered a variable initial temperature distribution and combined convective, radiative, and evaporative boundary conditions. Predicted values agreed well with experimental data collected in actual processing conditions. Validation of model performance resulted in maximum deviations of 2.54°C and 0.29% for temperature and weight loss histories, respectively. The maximum temperature deviation (2.54°C) occurred at the surface; however, for …