Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Finite element analysis

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 101

Full-Text Articles in Engineering

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which …


Microscale Modelling Of Lightning Damage In Fibre-Reinforced Composites, Scott L. J. Millen, Juhyeong Lee Mar 2023

Microscale Modelling Of Lightning Damage In Fibre-Reinforced Composites, Scott L. J. Millen, Juhyeong Lee

Mechanical and Aerospace Engineering Faculty Publications

In this work, three-dimensional (3D) finite element simulations were undertaken to study the effects of lightning strikes on the microscale behaviour of continuous fibre-reinforced composite materials and to predict and understand complex lightning damage mechanisms. This approach is different from the conventional mesoscale or macroscale level of analysis, that predicts the overall lightning damage in composite laminates, thus providing better understanding of lightning-induced thermo-mechanical damage at a fundamental level. Micromechanical representative volume element (RVE) models of a UD composite laminate were created with circular carbon fibres randomly distributed in an epoxy matrix. The effects of various grounding conditions (one-, two-, …


Empirical Fragility Functions And Numerical Parametric Study For Buckling Of Steel Grain Bins Under High Wind Loads, Andrew Ruder Dec 2022

Empirical Fragility Functions And Numerical Parametric Study For Buckling Of Steel Grain Bins Under High Wind Loads, Andrew Ruder

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

While rural infrastructure is critical to the agricultural industry, it has been historically more susceptible to damage and slower to recover following natural disasters than its urban and suburban counterparts. This has been made evident most recently by the events of the August 10, 2020, derecho in which rural regions in Iowa were among the hardest hit areas with sustained windspeeds exceeding 120 mph. Among the most frequently damaged structures in this event were corrugated steel grain bins, which farmers and co-ops use to dry and store certain commodities. Unlike most other critical structures, steel grain bins are not designed …


Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi Sep 2022

Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi

Department of Mechanical and Materials Engineering: Faculty Publications

Lightweight foam sandwich structures have excellent energy absorption capacity, combined with good mechanical properties and low density. The main goal of this study is to test the application of an innovative hybrid sandwich protective device in an offshore wind turbine (OWT). The results are useful for offshore structure applications. Different lightweight materials (aluminum foam, agglomerated cork, and polyurethane foam) were investigated using experimental tests and numerical simulations. Closed-cell aluminum foam showed the best performance in terms of the energy absorption capacity during an impact. As such, a Metallic Foam Shell (MFS) device was proposed for the fender of offshore wind …


Elucidating The Interfacial Bonding Behavior Of Over-Molded Hybrid Fiber Reinforced Polymer Composites: Experiment And Multiscale Numerical Simulation, Gideon A. Lyngdoh, Sumanta Das Sep 2022

Elucidating The Interfacial Bonding Behavior Of Over-Molded Hybrid Fiber Reinforced Polymer Composites: Experiment And Multiscale Numerical Simulation, Gideon A. Lyngdoh, Sumanta Das

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

This paper implements molecular dynamics (MD) simulation using reactive force field (ReaxFF) to evaluate the

atomistic origin of the interfacial behavior in the overmolded hybrid unidirectional continuous carbon fiber low-melt PAEK (CFR- LMPAEK)-short carbon fiber reinforced PEEK (SFR-PEEK) polymer composites. From the MD simulation, it was observed that the

interfacial properties improve with increasing maximum processing temperature and injection pressure although such an improving trajectory gets saturated beyond specific limits. The interfacial strength and fracture response of the hybrid polymer system at the interface are also evaluated. The mechanical responses obtained from MD simulation are used as adhesive properties in …


Comparative Study Of Tapered Versus Conventional Cylindrical Balloon For Stent Implantation In Stenotic Tapered Artery, Xiang Shen, Jiabao Jiang, Hongfei Zhu, Kaikai Lu, Pengfei Dong, Linxia Gu Aug 2022

Comparative Study Of Tapered Versus Conventional Cylindrical Balloon For Stent Implantation In Stenotic Tapered Artery, Xiang Shen, Jiabao Jiang, Hongfei Zhu, Kaikai Lu, Pengfei Dong, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The natural tapering of coronary arteries often creates a dilemma for optimal balloon sizing during stenting. The influence of different balloon types, namely, a tapered balloon and a conventional cylindrical balloon, on the mechanical performance of the stent as well as arterial mechanics was investigated via the finite element method. Stent free-expansion and stent deployment in a stenotic tapered artery were investigated numerically. The biomechanical behavior of the two balloon types was compared in terms of stent foreshortening, stent deformation, stent stress distribution, and arterial wall stress distribution. Results indicate that balloon types affect the transient behavior of the stent …


Validation Of Experimental And Finite Element Biomechanical Evaluation Of Human Cadaveric Mandibles, Shirish M. Ingawale, Deepak G. Krishnan, Tarun Goswami Jul 2022

Validation Of Experimental And Finite Element Biomechanical Evaluation Of Human Cadaveric Mandibles, Shirish M. Ingawale, Deepak G. Krishnan, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

Background: Biomechanical analysis of human mandible is important not only to understand mechanical behavior and structural properties, but also to diagnose and develop treatment options for mandibular disorders. Therefore, the objective of this research was to generate analytical and experimental data on mandibles, construct custom 3D models, and compare the analytically derived maximum strains with strain gage data in five areas of interest for each mandible. Methods: We investigated the surface strains in the cadaveric human mandibles under different configurations of cyclic compressive loads in an experimental setting and compared these experimental strain data with results derived from computational finite …


Design And Finite Element Analysis Of Patient-Specific Total Temporomandibular Joint Implants, Shirish M. Ingawale, Tarun Goswami Jun 2022

Design And Finite Element Analysis Of Patient-Specific Total Temporomandibular Joint Implants, Shirish M. Ingawale, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

In this manuscript, we discuss our approach to developing novel patient-specific total TMJ prostheses. Our unique patient-fitted designs based on medical images of the patient’s TMJ offer accurate anatomical fit, and better fixation to host bone. Special features of the prostheses have potential to offer improved osseo-integration and durability of the devices. The design process is based on surgeon’s requirements, feedback, and pre-surgical planning to ensure anatomically accurate and clinically viable device design. We use the validated methodology of FE modeling and analysis to evaluate the device design by investigating stress and strain profiles under functional/normal and para-functional/worst-case TMJ loading …


Numerical Modeling And Experimental Investigation Of Effective Elastic Properties Of The 3d Printed Gyroid Infill, Philip Bean, Roberto A. Lopez-Anido, Senthil Vel Feb 2022

Numerical Modeling And Experimental Investigation Of Effective Elastic Properties Of The 3d Printed Gyroid Infill, Philip Bean, Roberto A. Lopez-Anido, Senthil Vel

Civil Engineering Faculty Scholarship

A numerical homogenization approach is presented for the effective elastic moduli of 3D printed cellular infills. A representative volume element of the infill geometry is discretized using either shell or solid elements and analyzed using the finite element method. The elastic moduli of the bulk cellular material are obtained through longitudinal and shear deformations of a representative volume element under periodic boundary conditions. The method is used to analyze the elastic behavior of gyroid infills for varying infill densities. The approach is validated by comparing the Young’s modulus and Poisson’s ratio with those obtained from compression experiments. Results indicate that …


Thermoforming Process Effects On Structural Performance Of Carbon Fiber Reinforced Thermoplastic Composite Parts Through A Manufacturing To Response Pathway, Madhura Limaye, Sai Aditya Pradeep, Anmol Kothari, Sushil Savla, Akshat Agha, Srikanth Pilla, Gang Li Feb 2022

Thermoforming Process Effects On Structural Performance Of Carbon Fiber Reinforced Thermoplastic Composite Parts Through A Manufacturing To Response Pathway, Madhura Limaye, Sai Aditya Pradeep, Anmol Kothari, Sushil Savla, Akshat Agha, Srikanth Pilla, Gang Li

Publications

Thermoforming process of thermoplastic-based continuous CFRP's offer a major advantage in reducing cycle times for large-scale productions, but it can also have a significant impact on the structural performance of the parts by inducing undesirable effects. This necessitates the development of an optimal manufacturing process that minimizes the introduction of undesirable factors in the structure and thereby achieves the targeted mechanical performance. This can be done by first establishing a relationship between the manufacturing process and mechanical performance and successively optimizing it to achieve the desired targets. The current study focuses on the former part, where a manufacturing-to-response (MTR) pathway …


Retrospective Evaluation And Framework Development Of Bone Anisotropic Material Behavior Compared With Elastic, Elastic-Plastic, And Hyper-Elastic Properties, Farah Hamandi, James T. Tsatalis, Tarun Goswami Jan 2022

Retrospective Evaluation And Framework Development Of Bone Anisotropic Material Behavior Compared With Elastic, Elastic-Plastic, And Hyper-Elastic Properties, Farah Hamandi, James T. Tsatalis, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

The main motivation for studying damage in bone tissue is to better understand how damage develops in the bone tissue and how it progresses. Such knowledge may help in the surgical aspects of joint replacement, fracture fixation or establishing the fracture tolerance of bones to prevent injury. Currently, there are no standards that create a realistic bone model with anisotropic material properties, although several protocols have been suggested. This study seeks to retrospectively evaluate the damage of bone tissue with respect to patient demography including age, gender, race, body mass index (BMI), height, and weight, and their role in causing …


Evaluation And Damage Detection Of Highway Bridges With Distinct Vulnerabilities, Mohammad Abedin Nov 2021

Evaluation And Damage Detection Of Highway Bridges With Distinct Vulnerabilities, Mohammad Abedin

FIU Electronic Theses and Dissertations

Bridge failures over the past few decades have shown conventional bridge monitoring is insufficient to effectively evaluate the safety of this important piece of infrastructure. Therefore, new methods for bridge monitoring and special considerations in bridge design are needed to ensure the health of these structures as they continue to age and prevent the possibility of catastrophic collapses. The objective of this research is to explore new means for detecting damage in bridge members during normal operations that are both accurate and affordable at the same time. However, to make any damage detection method effective and efficient, the behavior of …


On The Modeling Of Bearing Voltage And Current In Pwm Converter-Fed Electric Machines Using Electromagnetic Finite Element Analysis, Peng Han, Yibin Zhang, Murat G. Kesgin, Greg Heins, Dean Patterson, Mark Thiele, Dan M. Ionel Oct 2021

On The Modeling Of Bearing Voltage And Current In Pwm Converter-Fed Electric Machines Using Electromagnetic Finite Element Analysis, Peng Han, Yibin Zhang, Murat G. Kesgin, Greg Heins, Dean Patterson, Mark Thiele, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Bearing voltages and resulting currents in electric machines driven by PWM converters with fast switching and high dv/dt can cause premature bearing failures. With the transition from conventional Si devices to wide bandgap (WBG) devices and increase in switching frequency, bearing voltages and currents become more significant and need to be addressed from the early design stage. This paper proposes to use coupled field-circuit electromagnetic finite element analysis (FEA) to model bearing voltage and current in electric machines, which takes into account the influence of distributed winding conductors and frequency-dependent winding RL parameters. The three known bearing current types are …


Fragility Functions Of Manufactured Houses Under Earthquake Loads, Shuyah Tani Aurore Ouoba Jul 2021

Fragility Functions Of Manufactured Houses Under Earthquake Loads, Shuyah Tani Aurore Ouoba

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Manufactured homes are factory-built homes made of wooden structural members, then transported and installed on a given site. Manufactured housing is used in many countries, such as in Australia, and in New Zealand but remain mostly popular in the United States. In 2020, nearly 22 million people were estimated to live in manufactured homes in the United States, with an increase of more than fifty percent in the shipment over the past seven years. However, performance observations from the last decades have shown the vulnerability of manufactured homes to extreme events, like windstorms and earthquakes. Damage assessments and post-event evaluations …


On The Design Of Coreless Permanent Magnet Machines For Electric Aircraft Propulsion, Damien Lawhorn, Peng Han, Donovin Lewis, Yaser Chulaee, Dan M. Ionel Jun 2021

On The Design Of Coreless Permanent Magnet Machines For Electric Aircraft Propulsion, Damien Lawhorn, Peng Han, Donovin Lewis, Yaser Chulaee, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper presents design and prototyping studies for coreless and slotless permanent magnet (PM) machines, which have the potential for high power density and efficiency, and discusses their feasibility for electric aircraft propulsion. The emphasis is on axial flux permanent magnet (AFPM) machines with printed circuit board (PCB) stators that have advantages over their wired counterparts in terms of design flexibility, coil accuracy, manufacturing process reliability, and heat dissipation. Detailed electromagnetic finite element analysis models were developed and employed alongside analytical sizing equations to evaluate the performance of two dual-rotor single-stator coreless AFPM designs employing wave and spiral PCB winding …


Reliability Of Sfrp-Strengthened Rc Bridge Columns Subjected To Blast Loads, Ahmad Alsendi, Christopher D. Eamon May 2021

Reliability Of Sfrp-Strengthened Rc Bridge Columns Subjected To Blast Loads, Ahmad Alsendi, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

The reliability of reinforced concrete bridge columns strengthened with externally bonded, steel-fiber reinforced polymer fabric subjected to blast loads was investigated. Columns were modeled with a nonlinear finite element approach that considers material damage, fracture, and separation. Different concrete strengths, longitudinal reinforcement ratios, and gravity and blast load levels were considered, while uncertainties in material strength and stiffness parameters, as well as load characteristics, were incorporated in the probabilistic analysis. It was found that the use of SFRP can allow significant increases in blast load while maintaining the same level of column reliability.


Ball-On-Ring Test Validation For Equibiaxial Flexural Strength Testing Of Engineered Ceramics, Adrianna E. Lupercio, Ehsan Moshkelgosha, Riley C. Winters, Cayden Doyle, Mahmood Mamivand, Andrew T. Nelson, Brian J. Jaques May 2021

Ball-On-Ring Test Validation For Equibiaxial Flexural Strength Testing Of Engineered Ceramics, Adrianna E. Lupercio, Ehsan Moshkelgosha, Riley C. Winters, Cayden Doyle, Mahmood Mamivand, Andrew T. Nelson, Brian J. Jaques

Materials Science and Engineering Faculty Publications and Presentations

The validation of a ball-on-ring, equibiaxial flexural strength method to obtain the transverse rupture strength (TRS) of right cylindrical ceramic specimens was performed in this study. Validation of the test method was achieved using commercially available engineered high purity alumina disks and finite element (FE) model analysis. The validated fixture was then used to obtain the TRS and Weibull statistical analysis of MgO-partially stabilized zirconia (MSZ) and Y2O3-partially stabilized zirconia (YSZ) ceramic disks. TRS data for alumina, MSZ, and YSZ agreed with the TRS values reported in the literature. A statistically relevant number of samples (N …


Quantitative Resistance Assessment Of Sfrp-Strengthened Rc Bridge Columns Subjected To Blast Loads, Ahmad Alsendi, Christopher D. Eamon Apr 2020

Quantitative Resistance Assessment Of Sfrp-Strengthened Rc Bridge Columns Subjected To Blast Loads, Ahmad Alsendi, Christopher D. Eamon

Civil and Environmental Engineering Faculty Research Publications

The blast resistance of a typical reinforced concrete bridge pier column design was modeled with a nonlinear finite element approach that considers material damage, fracture, and separation. While varying concrete strength, amount of longitudinal reinforcing steel, and gravity load, the effect of applying an externally bonded steel fiber reinforced polymer (SFRP) wrapping was assessed. The presented approach uniquely quantifies column blast resistance in terms of charge weight. It was found that blast capacity was roughly linearly related to concrete strength and steel reinforcement ratio, the former of which is most influential. It was further found that a single layer of …


Perturbed Stress Field Of The Human Lens Capsule After Cataract Surgery, Kurt Ameku, Caleb Berggren, Ryan M. Pedrigi Apr 2020

Perturbed Stress Field Of The Human Lens Capsule After Cataract Surgery, Kurt Ameku, Caleb Berggren, Ryan M. Pedrigi

UCARE Research Products

Current modeling of the human lens capsule has been focused on the mechanism of accommodation and its decline with age, but few studies have modeled the effects of cataract surgery and quantified the altered mechanical environment introduced by the procedure. The goal of this study is to develop the first fully 3-D finite element model of the post-surgical human lens capsule with an implanted device in order to characterize lens capsule mechanics after cataract surgery. The model demonstrates a highly perturbed stress field compared to the native state, which we hypothesize is the primary driving force behind the long-term errant …


Sway And No-Sway Behaviour Of Pitched Roof Portal Frames Composed Of Cold-Formed Steel Sections, Ghada El-Mahdy Ph.D, P.Eng., Maged Tawfick Hanna Ph.D Dec 2019

Sway And No-Sway Behaviour Of Pitched Roof Portal Frames Composed Of Cold-Formed Steel Sections, Ghada El-Mahdy Ph.D, P.Eng., Maged Tawfick Hanna Ph.D

Civil Engineering

Cold-formed sections buckle locally and distortionally in combination with overall buckling of the member. When these sections are incorporated into a portal frame structure, this combination of buckling modes affects the overall buckling behaviour of the portal frame. The objective of this paper is to study the effect of local and distortional buckling on the overall behaviour of portal frames. The portal frames studied have a span of 10 m and an eave height of 3 m with a roof pitch of 1:10. Two frames are studied the first with one intermediate interconnector at the midpoints of the column and …


Long-Term Performance Evaluation Of Nudeck In Kearney East Bypass, George Morcous, Marc Maguire Dec 2019

Long-Term Performance Evaluation Of Nudeck In Kearney East Bypass, George Morcous, Marc Maguire

Nebraska Department of Transportation: Research Reports

The Kearney East Bypass bridge is the first project that implements the newly developed precast concrete deck system (known as 2nd generation NUDECK). The new system consists of full-depth full-width precast prestressed concrete deck panels that are 12 ft (3.66 m) long each. The panels have covered shear pockets at 4 ft (1.22 m) spacing on each girder line to host clustered shear connectors that are adjustable in height. Narrow unreinforced transverse joints are used to eliminate the need for deck overlay. Also, deck panels are post-tensioned in the longitudinal direction using a new post-tensioning system that eliminates the need …


Performance Evaluation Of Inverted Tee (It) Bridge System, Garrett P. Martindale, Daniel Watson, Antony Mohsen Kamal Masoud Kodsy, Mostafa Abo El-Khier, Richard L. Wood, George Morcous Aug 2019

Performance Evaluation Of Inverted Tee (It) Bridge System, Garrett P. Martindale, Daniel Watson, Antony Mohsen Kamal Masoud Kodsy, Mostafa Abo El-Khier, Richard L. Wood, George Morcous

Nebraska Department of Transportation: Research Reports

The Inverted Tee (IT) girder bridge system was originally developed in 1996 by the University of Nebraska–Lincoln (UNL) researchers and Nebraska Department of Transportation (NDOT) engineers. This bridge system currently accounts for over 110 bridges in Nebraska used for both state highways and local county roads. Extensive longitudinal and transverse deck cracking have been observed and noted in numerous bridge inspection reports. Since the IT girder bridge system is relatively new, limited data and knowledge exist on its structural performance and behavior. This study evaluates the IT girder bridge system by conducting twenty field observations as well as recording accelerometer, …


Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part Ii, Lan Li, Lei Yan, Yitao Chen, Tan Pan, Xinchang Zhang, Wenyuan Cui, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part Ii, Lan Li, Lei Yan, Yitao Chen, Tan Pan, Xinchang Zhang, Wenyuan Cui, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Finite Element Analysis (FEA) is used to predict the transient thermal cycle and optimize process parameters to analyze these effects on deformation and residual stresses. However, the process of predicting the thermal history in this process with the FEA method is usually time-consuming, especially for large-scale parts. In this paper, an effective predictive model of part deformation and residual stress was developed for accurately predicting deformation and residual stresses in large-scale parts. An equivalent body heat flux proposed from the single layer laser scan model was imported as the thermal load to the layer by layer model. The hatched layer …


Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During the part forming in laser powder bed fusion process, thermal distortion is one big problem due to the thermal stress which is caused by the high cooling rate and temperature gradient. Therefore, it is important to know the effect of process parameters on thermal and stress evolution in the melt zone. In this paper, a 3D finite element model for Selective Laser Melting (SLM) process based on sequentially coupled thermo-mechanical field analysis was developed for accurately predicting thermal history and surface features, like distortion and residual stress. Temperature dependent material properties for performed material 304L stainless steel are incorporated …


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy Jul 2019

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process …


Nonprehensile Manipulation Of Deformable Objects: Achievements And Perspectives From The Rodyman Project, Aykut C. Satici Sep 2018

Nonprehensile Manipulation Of Deformable Objects: Achievements And Perspectives From The Rodyman Project, Aykut C. Satici

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The goal of this work is to disseminate the results achieved so far within the RODYMAN project related to planning and control strategies for robotic nonprehensile manipulation. The project aims at advancing the state of the art of nonprehensile dynamic manipulation of rigid and deformable objects to future enhance the possibility of employing robots in anthropic environments. The final demonstrator of the RODYMAN project will be an autonomous pizza maker. This article is a milestone to highlight the lessons learned so far and pave the way towards future research directions and critical discussions.


Experimental And Modeling Study Of Compressive Creep In 3d-Woven Ni-Based Superalloys, Hoon-Hwe Cho, Dinc Erdeniz, Keith W. Sharp, David C. Dunand Aug 2018

Experimental And Modeling Study Of Compressive Creep In 3d-Woven Ni-Based Superalloys, Hoon-Hwe Cho, Dinc Erdeniz, Keith W. Sharp, David C. Dunand

Mechanical Engineering Faculty Research and Publications

Micro-architectured Ni-based superalloy structures, with Ni-20Cr-3Ti-2Al (wt.%) composition and γ/γ′-microstructure, are created by a multi-step process: (i) non-crimp orthogonal 3D-weaving of ductile, 202 μm diameter Ni-20%Cr wires, (ii) gas-phase alloying with Al and Ti, (iii) simultaneous transient-liquid phase (TLP) bonding between wires and homogenization within wires via interdiffusion, (iv) solutionizing to create a single-phase solid solution, and (v) aging to precipitate the γ′ phase. The creep behavior of these 3D-woven γ/γ′ nickel-based superalloys is studied under uniaxial compression via experiments at 825 °C and via finite element (FE) analysis, using a 3D model of the woven structures obtained …


Impact Of Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Pad On Railroad Bearing Thermal Management, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh Jun 2018

Impact Of Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Pad On Railroad Bearing Thermal Management, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh

Mechanical Engineering Faculty Publications and Presentations

It is a known fact that polymers and all other materials develop hysteresis heating due to the viscoelastic response or internal friction. The hysteresis or phase lag occurs when cyclic loading is applied leading to the dissipation of mechanical energy. The hysteresis heating is induced by the internal heat generation of the material, which occurs at the molecular level as it is being disturbed cyclically. Understanding the hysteresis heating of the railroad bearing elastomer suspension element during operation is essential to predict its dynamic response and structural integrity, as well as to predict the thermal behavior of the railroad bearing …


Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy Apr 2018

Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The term “hybrid” has been widely applied to many areas of manufacturing. Naturally, that term has found a home in additive manufacturing as well. Hybrid additive manufacturing or hybrid-AM has been used to describe multi-material printing, combined machines (e.g., deposition printing and milling machine center), and combined processes (e.g., printing and interlayer laser re-melting). The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing paradigm. This work focuses on hybrid-AM processes, which are defined as the use of additive manufacturing (AM) with one …


A Model-Based Approach For Estimation Of Changes In Lumbar Segmental Kinematics Associated With Alterations In Trunk Muscle Forces, Iman Shojaei, Navid Arjmand, Judith R. Meakin, Babak Bazrgari Mar 2018

A Model-Based Approach For Estimation Of Changes In Lumbar Segmental Kinematics Associated With Alterations In Trunk Muscle Forces, Iman Shojaei, Navid Arjmand, Judith R. Meakin, Babak Bazrgari

Biomedical Engineering Faculty Publications

The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set …