Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

2015

Fracture

Articles 1 - 6 of 6

Full-Text Articles in Engineering

A Study To Evaluate And Understand The Response Of Aluminum Alloy 2026 Subjected To Tensile Deformation, Daniel Lam, Craig Menzemer, Tirumalai Srivatsan Oct 2015

A Study To Evaluate And Understand The Response Of Aluminum Alloy 2026 Subjected To Tensile Deformation, Daniel Lam, Craig Menzemer, Tirumalai Srivatsan

Craig Menzemer

The strain concentration factors were determined for aluminum alloy 2026 in the T3511 temper using multi-hole structural coupon specimens. Samples of the alloy were evaluated for both the 6.25 mm (0.25 in.) thick and 10 mm (0.4 in.) thick specimens and having widths of 50 mm (2 in.) and 100 mm (4 in.), respectively. For the case of the specimens that were 50 mm in width the mechanical tests were conducted for both the open hole and filled hole conditions and the corresponding strain concentration value was determined. Threaded fasteners having collars were used for the case of the filled …


Mechanisms Governing Fatigue, Damage, And Fracture Of Commercially Pure Titanium For Viable Aerospace Applications, Udaykar Bathini, Tirumalai Srivatsan, Anil Patnaik, Craig Menzemer Oct 2015

Mechanisms Governing Fatigue, Damage, And Fracture Of Commercially Pure Titanium For Viable Aerospace Applications, Udaykar Bathini, Tirumalai Srivatsan, Anil Patnaik, Craig Menzemer

Craig Menzemer

In this paper, the cyclic stress amplitude controlled high-cycle fatigue properties and final fracture behavior of commercially pure titanium (Grade 2) are presented and discussed. The material characterization was developed and put forth for selection and use in a spectrum of applications spanning the industries of aerospace, defense, chemical, marine, and commercial products. Test specimens were prepared from the as-received plate stock of the material with the stress axis both parallel (longitudinal) and perpendicular (transverse) to the rolling direction of the plate. The test specimens were cyclically deformed at a constant load ratio of 0.1, at different values of maximum …


Mechanisms Governing Fatigue, Damage, And Fracture Of Commercially Pure Titanium For Viable Aerospace Applications, Udaykar Bathini, Tirumalai Srivatsan, Anil Patnaik, Craig Menzemer Aug 2015

Mechanisms Governing Fatigue, Damage, And Fracture Of Commercially Pure Titanium For Viable Aerospace Applications, Udaykar Bathini, Tirumalai Srivatsan, Anil Patnaik, Craig Menzemer

Anil Patnaik

In this paper, the cyclic stress amplitude controlled high-cycle fatigue properties and final fracture behavior of commercially pure titanium (Grade 2) are presented and discussed. The material characterization was developed and put forth for selection and use in a spectrum of applications spanning the industries of aerospace, defense, chemical, marine, and commercial products. Test specimens were prepared from the as-received plate stock of the material with the stress axis both parallel (longitudinal) and perpendicular (transverse) to the rolling direction of the plate. The test specimens were cyclically deformed at a constant load ratio of 0.1, at different values of maximum …


A Study Of Cyclic Fatigue, Damage Initiation, Damage Propagation, And Fracture Of Welded Titanium Alloy Plate, Tirumalai Srivatsan, Udaykar Bathini, Anil Patnaik, T. Quick Aug 2015

A Study Of Cyclic Fatigue, Damage Initiation, Damage Propagation, And Fracture Of Welded Titanium Alloy Plate, Tirumalai Srivatsan, Udaykar Bathini, Anil Patnaik, T. Quick

Anil Patnaik

In this paper, the influence of test specimen orientation and microstructure on cyclic stress-amplitude controlled fatigue response, damage initiation, damage propagation and fracture behavior of samples taken from a welded plate of titanium alloy is presented and discussed. Test specimens from the chosen alloy were prepared from an as-welded plate of the material with the stress axis both parallel (longitudinal) and perpendicular (transverse) to the deformed (rolling) direction of the plate. The test specimens were cyclically deformed at different values of maximum stress at a constant load ratio of 0.1, and the resultant cycles-to-failure was recorded. The fracture surfaces of …


The Quasi-Static And Cyclic Fatigue Fracture Behavior Of An Emerging Titanium Alloy, Kannan Manigandan, Tirumalai Srivatsan, Gregory Morscher Apr 2015

The Quasi-Static And Cyclic Fatigue Fracture Behavior Of An Emerging Titanium Alloy, Kannan Manigandan, Tirumalai Srivatsan, Gregory Morscher

Dr. Gregory N. Morscher

Sustained research and development efforts culminating in the emergence of new and improved titanium alloys have provided both the impetus and interest for studying their mechanical behavior under the extrinsic influence of loading spanning both static and dynamic. In this article, the quasi-static and cyclic fatigue fracture behavior of a titanium alloy (Ti-Al-V-Fe-O2) is highlighted. Test specimens of this titanium alloy were deformed both in quasi-static tension and cyclic stress amplitude–controlled fatigue. The quasi-static mechanical properties, cyclic fatigue response and microscopic mechanisms contributing to deformation and eventual fracture are highlighted in light of the competing and mutually interactive influences of …


Monitoring Interlaminar Crack Growth In Ceramic Matrix Composites Using Electrical Resistance, Rabih Mansour, Emmanuel Maillet, Gregory Morscher Apr 2015

Monitoring Interlaminar Crack Growth In Ceramic Matrix Composites Using Electrical Resistance, Rabih Mansour, Emmanuel Maillet, Gregory Morscher

Dr. Gregory N. Morscher

This letter introduces a method that uses electrical resistance to monitor crack growth during interlaminar fracture testing of woven SiC fiber-reinforced SiC matrix composites at room temperature without visual observation. The estimated crack length is in excellent agreement with the measured length after subtracting a constant value of resistance related to the initial stage of crack development. This non-visual monitoring method holds great promise for in situ measurement of crack growth during high-temperature testing of ceramic matrix composites.