Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 62

Full-Text Articles in Engineering

Adaption Of Catechol And Reversible Addition-Fragmentation Chain-Transfer (Raft) Chemistries For Water-Based Applications, Olabode Oyeneye Dec 2017

Adaption Of Catechol And Reversible Addition-Fragmentation Chain-Transfer (Raft) Chemistries For Water-Based Applications, Olabode Oyeneye

Electronic Thesis and Dissertation Repository

Incorporating the binding chemistry of catechol functionality with RAFT chemistry offers a facile and simplified approach for developing a suite of new 2D and 3D hybrid materials with tailored morphologies. Leveraging both chemistries by synthesizing catechol-end functionalized RAFT agents and catechol-containing monomeric species for RAFT (co)polymerization, this dissertation examined a new series of advanced materials that were designed for water-based applications including model flocculants, thermoresponsive hydrogels, adsorbents and underwater adhesives.

To prepare the RAFT agents, novel trithiocarbonates with several catechol end R groups (as postpolymerization anchors) were synthesized that differ in their carbonyl α-substituents (Dopa-CTAs). These materials were evaluated for …


The Processing And Polarization Reversal Dynamics Of Thin Film Poly(Vinylidene) Fluoride, Noel Mayur Dawson Dec 2017

The Processing And Polarization Reversal Dynamics Of Thin Film Poly(Vinylidene) Fluoride, Noel Mayur Dawson

Nanoscience and Microsystems ETDs

Many ferroelectric devices benefit from the ability to deposit thin ferroelectric layers. Poly(vinylidene) fluoride (PVDF) is the prototypical ferroelectric polymer, but processing of thin film ferroelectric PVDF remains a challenge due to the formation of large voids in the film during traditional thin film processing. The research described in this dissertation starts by investigating the origin of these voids. The cause of these voids is found to be caused by vapor induced phase separation (VIPS). Guided by the thermodynamics of VIPS, a process is then designed to produce void-free ferroelectric PVDF thin films on polar and non-polar substrates. The films …


Characterization And Modeling Of Asphalt Concrete For Dynamic Properties And Performances, A S M A. Rahman Dec 2017

Characterization And Modeling Of Asphalt Concrete For Dynamic Properties And Performances, A S M A. Rahman

Civil Engineering ETDs

The recently developed mechanistic-empirical pavement design guide (MEPDG, also known as Pavement M-E design method) uses the nationally calibrated, binder viscosity-based dynamic modulus predictive model for the design and analysis of asphalt pavements. In this study, this model is assessed for its appropriateness for asphalt-aggregate mixtures typically used in New Mexico. In essence, this study investigates the predictability issue of complex modulus of New Mexico mixes. A total of 54 Superpave mixes with different aggregate gradations, air voids, and binder grades were collected from the mixing plants and from the pavement construction sites. The loose asphalt mixtures were then compacted, …


Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang Dec 2017

Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang

Electronic Theses and Dissertations

Compared to conventional manufacturing process, additive manufacturing (AM) offers free-form design, lighter and more ergonomic products, short lead time and less waste. Extrusion-based AM can be used to print thermoplastics. However, extrusion-based AM has processing challenges in printing semi-crystalline thermoplastics, for instance, polypropylene (PP). Cellulose nanofibrils (CNF) are one type of cellulose nanofibers that are produced from pulp fibers. CNF has extraordinary properties which make it an ideal candidate to reinforce polymers. Spray-dried CNF (SDCNF) is able to be incorporated into thermoplastic matrices without modifying conventional processing procedures.

The mechanical properties of 3D printed plastic parts have been considered significantly …


Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders Dec 2017

Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders

Electronic Theses and Dissertations

The purpose of this research was to investigate the use of cellulose nanofibers (CNF) compounded into an impact modified polypropylene (IMPP) matrix. A IMPP was used because it shrinks less than a PP homopolymer during FLM processing. An assessment of material properties from fused layer modeling (FLM), an additive manufacturing (AM) method, and injection molding (IM) was conducted. Results showed that material property measurements in neat PP were statistically similar between IM and FLM for density, strain at yield and flexural stiffness. Additionally, PP plus the coupling agent maleic anhydride (MA) showed statistically similar results in comparison of IM and …


Development Of High-Performing Polydimethylsiloxane-Based Membranes For Carbon Dioxide Separation, Tao Hong Dec 2017

Development Of High-Performing Polydimethylsiloxane-Based Membranes For Carbon Dioxide Separation, Tao Hong

Doctoral Dissertations

Membrane separation is highlighted as one of the most promising approaches to mitigate the excessive CO2 [carbon dioxide] emission, due to its significant reduction of energy cost compared with many conventional separation techniques. Unfortunately, the separation performance of current membranes does not meet the practical CO2/N2 [nitrogen] separation requirements. And due to the huge volume of industrial flue gas, membranes with exceptionally high permeability are needed for practical reasons.

Currently, the separation mechanism of most polymeric membranes is based on size-sieving. However, this method is not sufficient for CO2/N2 separations due to the …


Preparation Of Benzoxazine Monomers And Prepolymers From Continuous Reactor: Effects Of Molecular Architecture On Properties, Andrew S. Frazee Dec 2017

Preparation Of Benzoxazine Monomers And Prepolymers From Continuous Reactor: Effects Of Molecular Architecture On Properties, Andrew S. Frazee

Dissertations

Despite the modularity in molecular design and high-performance properties of benzoxazine thermoset chemistries, there are two primary shortcomings of benzoxazine marketability. Firstly, multifunctional benzoxazines are unfavorable for processing as they are glassy solids at ambient temperature. Secondly, benzoxazine chemistries are commercially synthesized using batch reactors, which are energy intensive and require the use of environmentally unfavorable solvents.

The purpose of the work herein is to address these shortcomings, which include:

1.) interrelationships between molecular architectures of synthesized monofunctional benzoxazine monomers and their ambient temperature physical states (i.e. liquid or solid) using molecular dynamics simulations and experimental comparisons,

2.) continuous high-shear …


Usa Boccia Ball Ramp For Athletes With Quadriplegia, Alissa A. Koukourikos, Matthew Lee, Nathan Bernards Dec 2017

Usa Boccia Ball Ramp For Athletes With Quadriplegia, Alissa A. Koukourikos, Matthew Lee, Nathan Bernards

Mechanical Engineering

In this report, the design process in creating an assistive device for Boccia Classification 3 (BC3) players is outlined. The initial research steps, including research into the rules of the game, capabilities of the players, and existing products is documented to show where ideas for the product stemmed from. This transitions into requirements that the sponsor requested, and preliminary designs and ideas for the product. Finally, this report explains the details of the final design, which has been analyzed for safety, ease of use, and ability to function under different conditions. The processes of manufacturing and testing will also be …


Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey Dec 2017

Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey

MSU Graduate Theses

Self-assembled nature of block copolymer (BCP) makes them ideal for emerging technologies in nanometer scale. The micro phase separation between two or more dissimilar polymer blocks of BCP leads to uniform periodic nanostructures of different domains of dimension in the range of 5-100 nm, good for the development of emerging microelectronic and optoelectronics devices. Molecular weight and chain architecture of each blocks govern the morphology evolution; gives different structure like spherical, micelles, lamellae, cylindrical, gyroid etc. The morphology evolution of BCP nanostructure also depends on different external factors as well. In the first work of this thesis, three external factors …


Synthesis Of Graphene And Graphene-Based Composite Membrane, Yuanjun Fan Nov 2017

Synthesis Of Graphene And Graphene-Based Composite Membrane, Yuanjun Fan

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Vibration membrane equipped for earphone requires high performance in both mechanical properties and electronic properties. With extraordinary properties on both, graphene and graphene-based composite materials appear as a promising candidate for this application. Chemical vapor deposition (CVD) is believed to be the most convenient way to synthesize a large area (on scale of square centimeters) as well as a homogeneous thickness for the membrane. The thesis focuses on applying control variable experiment method to analyze different effects on mechanical property of the two CVD setting parameters: cooling rate, and hydrocarbon precursor. For isolating the specimens efficiently, a modified electrochemical method …


Note On The Rate And Energy Efficiency Limits For Additive Manufacturing, Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, Dusan P. Sekulic Oct 2017

Note On The Rate And Energy Efficiency Limits For Additive Manufacturing, Timothy Gutowski, Sheng Jiang, Daniel Cooper, Gero Corman, Michael Hausmann, Jan-Anders Manson, Timo Schudeleit, Konrad Wegener, Matias Sabelle, Jorge Ramos-Grez, Dusan P. Sekulic

Mechanical Engineering Faculty Publications

We review the process rates and energy intensities of various additive processing technologies and focus on recent progress in improving these metrics for laser powder bed fusion processing of metals, and filament and pellet extrusion processing of polymers and composites. Over the last decade, observed progress in raw build rates has been quite substantial, with laser metal processes improving by about 1 order of magnitude, and polymer extrusion processes by more than 2 orders of magnitude. We develop simple heat transfer models that explain these improvements, point to other possible strategies for improvement, and highlight rate limits. We observe a …


Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani Oct 2017

Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani

FIU Electronic Theses and Dissertations

The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this …


Development Of Starch-Polyvinyl Alcohol (Pva) Biodegradable Film: Effect Of Cross-Linking Agent And Antimicrobials On Film Characteristics, Aniket Satish More, Chandani Sen, Madhusweta Das Sep 2017

Development Of Starch-Polyvinyl Alcohol (Pva) Biodegradable Film: Effect Of Cross-Linking Agent And Antimicrobials On Film Characteristics, Aniket Satish More, Chandani Sen, Madhusweta Das

Journal of Applied Packaging Research

To satisfy the need of developing eco-friendly flexible antimicrobial packaging film with minimum use of synthetic chemical ingredients, the present study examined the efficacy of citric acid (CA) as cross-linking agent and essential oils (EOs), viz., cinnamon essential oil (CEO) and oregano essential oil (OEO) as natural antimicrobials in corn starch-polyvinyl alcohol (CS-PVA) film. Compared to film prepared from filmogenic solution (FS) containing 75 kg CS+8.75 kg PVA+24.6 kg glycerol per m3 FS, film additionally containing CA at 0.07 kg/kg CS indicated 95% higher ultimate tensile strength (UTS) and 27% lower water vapor permeability (WVP). Film developed with incorporation …


Effects Of Lignin As A Stabilizer Or Antioxidant In Polyolefins, Afsana S. Kabir Aug 2017

Effects Of Lignin As A Stabilizer Or Antioxidant In Polyolefins, Afsana S. Kabir

Electronic Thesis and Dissertation Repository

Lignin, a major component of biomass, is an attractive alternative to hindered phenol-based antioxidants for polymers due to its renewable nature and naturally occurring hindered phenolic structure. In this study, for the first time, lignin de-polymerization was explored as a promising approach to improve the reactivity of the lignin-based antioxidants for polymers (polyethylene, PE and polypropylene, PP). A proprietary hydrolytic de-polymerization process was utilized to increase the antioxidant activity of two types of technical lignin: kraft lignin, KL (a by-product from the pulp and paper industry) and hydrolysis lignin, HL (a by-product from the pre-treatment processes in cellulosic ethanol plants). …


Additive Manufacturing Process Of 3d Polyaniline Transducers Via Direct Ink Writing, Frederick Benjamin Holness Aug 2017

Additive Manufacturing Process Of 3d Polyaniline Transducers Via Direct Ink Writing, Frederick Benjamin Holness

Electronic Thesis and Dissertation Repository

Electroactive polymers exhibit a change in properties, typically size or shape, in response to electrical stimuli. One class of electroactive polymer of particular interest are the conjugated polymers, whose conjugated backbone structure imparts electrical conductivity. However, this structure imposes processing limitations restricting their form to 2D structures. To overcome this, we develop specially formulated polyaniline- based blends via counter-ion induced thermal doping for the fabrication of 3D conductive structures via direct ink writing. This approach employs multi-material extrusion for the production of structures with passive and active features, rapid device fabrication, and improved design freedom. A model of the thermal …


Structure-Force Field Generator For Molecular Dynamics Simulations, Carlos M. Patiño, Lorena Alzate, Alejandro Strachan Aug 2017

Structure-Force Field Generator For Molecular Dynamics Simulations, Carlos M. Patiño, Lorena Alzate, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Atomistic and molecular simulations have become an important research field due to the progress made in computer performance and the necessity of new and improved materials. Despite this, first principle simulations of large molecules are still not possible because the high computational time and resources required. Other methods, such as molecular dynamics, allow the simplification of calculations by defining energy terms to describe multiple atom interactions without compromising accuracy significantly. A group of these energy terms is called a force field, and each force field has its own descriptions and parameters. The objective of this project was to develop a …


Usage Of Fomblin Y To Improve Water Repellence Of Surface Coatings, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner Aug 2017

Usage Of Fomblin Y To Improve Water Repellence Of Surface Coatings, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Fluoro-Decyl POSS (FDP) has shown strong potential as a water repellant surface coating. Additionally, Fomblin is a solvent believed to have the ability to control the crystallization of POSS compounds on surfaces. Controlling the crystallization is key to improving water repelling abilities of surfaces. Thus, dip coating FDP and Fomblin onto surfaces is being investigated for water repulsion, mechanical stability, and deposition feasibility. Relative water repelling abilities of different coatings were determined by measuring contact angle of surfaces with water. Coatings with and without POSS and Fomblin were compared. It was shown that the surfaces treated with both POSS and …


Usage Of Fomblin Y To Improve Water Repellence Of Surface Coatings, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner Aug 2017

Usage Of Fomblin Y To Improve Water Repellence Of Surface Coatings, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Fluoro-Decyl POSS (FDP) has shown strong potential as a water repellant surface coating. Additionally, Fomblin is a solvent believed to have the ability to control the crystallization of POSS compounds on surfaces. Controlling the crystallization is key to improving water repelling abilities of surfaces. Thus, dip coating FDP and Fomblin onto surfaces is being investigated for water repulsion, mechanical stability, and deposition feasibility. First, temperature dependence of solubility of Fluoro-Decyl POSS in Fomblin was tested using Dynamic Light Scattering. Relative water repelling abilities of different coatings were determined by measuring contact angle of surfaces with water. Coatings with and without …


Comparative Solubility Of Poss Compounds In Fomblin Y, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner Aug 2017

Comparative Solubility Of Poss Compounds In Fomblin Y, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Fluoro-Decyl POSS (FDP) has shown strong potential as a water repellant surface coating. Additionally, Fomblin is a solvent believed to have the ability to control the crystallization of POSS compounds on surfaces. Controlling the crystallization is key to improving water repelling abilities of surfaces. Thus, dip coating FDP and Fomblin onto surfaces is being investigated for water repulsion, mechanical stability, and deposition feasibility. However, in order for this to be successful, POSS must be soluble in Fomblin. Temperature dependence of solubility of Fluoro-Hexyl, Fluoro-Octyl, Fluoro-Decyl POSS in Fomblin was tested using Dynamic Light Scattering. The values were compared, and it …


Cellulose Reinforced Thermoplastic Composites By In-Situ Ring-Opening Polymerization, Shahab Kashani Rahimi Aug 2017

Cellulose Reinforced Thermoplastic Composites By In-Situ Ring-Opening Polymerization, Shahab Kashani Rahimi

Dissertations

Over the past two decades, the increasing concern about the negative environmental impacts of synthetic materials has led to rising interests in utilizing renewable natural resources to develop polymer materials with comparable properties and performance to their synthetic counterparts. One of the major fields of interest is polymer composites where the replacement of synthetic fibers with bio renewable natural fibers is of great potential. However, the processing difficulties, in terms of fiber dispersion and thermal stability have limited the application of cellulosic fibers to polymers with low processing temperatures which are mostly hydrophobic polymers. As a result, the true reinforcing …


Membranes For Food And Bioproduct Processing, Alexandru Marius Avram Aug 2017

Membranes For Food And Bioproduct Processing, Alexandru Marius Avram

Graduate Theses and Dissertations

Modified membranes for process intensification in biomass hydrolysis

Production of biofuels and chemicals from lignocellulosic biomass is one of the leading candidates for replacement of petroleum based fuels and chemicals. However, conversion of lignocellulosic biomass into fuels and chemicals is not cost effective compared to the production of fuels and chemicals from crude oil reserves. Some novel and economically feasible approaches involve the use of ionic liquids as solvents or co-solvents, since these show improved solvation capability of cellulose over simple aqueous systems. Membranes offer unique opportunities for process intensification which involves fractionation of the resulting biomass hydrolysate leading to …


Molecular Dynamics Modeling And Simulation Of Bitumen Chemical Aging, Farshad Fallah Jul 2017

Molecular Dynamics Modeling And Simulation Of Bitumen Chemical Aging, Farshad Fallah

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Chemical aging of asphalt binder leads to significant changes in its mechanical and rheological properties, resulting in poor pavement behavior and distress. Various laboratory methods have been used to simulate asphalt aging during the service life of the pavement. However, controversy exists regarding the capability of these methods to predict field aging, as various factors interact with the pavement during service and the mechanism behind aging is not fully understood. The two main outcomes of chemical aging are oxidation of asphalt molecules, and change in asphalt SARA (saturate, aromatic, resin, and asphaltene) fractions. Reaction of oxygen with asphalt components forms …


Synthesis,Structure And Properties Of Ruthenium Polypyridyl Metalloligand Based Metal-Organic Frameworks, Mamatha Polapally Jul 2017

Synthesis,Structure And Properties Of Ruthenium Polypyridyl Metalloligand Based Metal-Organic Frameworks, Mamatha Polapally

Masters Theses & Specialist Projects

Metal-organic frameworks (MOFs) have been extensively studied because of their amazing applications in gas storage, purification, photocatalysis, chemical sensing, and imaging techniques. Ruthenium polypyridyl complexes have been broadly considered as photosensitizers for the conversion of solar energy and photoelectronic materials. With this aspect, we have synthesized three new ruthenium polypyridyl based MOFs ([Ru(H2bpc)Cu(bpc)(Hbpc)2(H2O)]·5H2O (1), [Ru(H2bpc)(Fe(bpc)(Hbpc)2(H2O)2]·6H2O (2) and [Ru(H2bpc)Ni(bpc)(Hbpc)2(H2O)2]·6H2O (3)) from ruthenium(III) chloride, bpc (2,2’- bipyridine-4,4’-dicarboxylic acid) ligand, and 3d M(II) metal ions (M(II)= Cu(II), Fe(II), Ni(II)). These MOFs were synthesized under hydro or solvothermal conditions by using water, ethanol or methanol as solvents. The crystal structures of the new compounds …


A Study In The Use Of Elastic Materials In Expandable Containment Units, Andrew J. Eisenman, Joby Anthony Iii, David Satagaj Jun 2017

A Study In The Use Of Elastic Materials In Expandable Containment Units, Andrew J. Eisenman, Joby Anthony Iii, David Satagaj

Montview Journal of Research & Scholarship

The rigidity of materials in conjunction with the aspect of elasticity has been a concern of modern technologies and construction in recent centuries because of the advantages that expandable storage would bring to the fields of containment units with respect to population growth and space exploration. The world population is currently growing at an exponential rate, and as our population grows, the more important it will become to have containment units that can both contain large volumes of material as well as minuscule amounts of material without wasting space. In order accomplish this, we will need a new type of …


Selective Depolymerization Of Industrial Hemp And Its Effects On Thermal Resistivity, Tanner J. Jolly Jun 2017

Selective Depolymerization Of Industrial Hemp And Its Effects On Thermal Resistivity, Tanner J. Jolly

Materials Engineering

There is a growing shift within the construction materials industry towards green and sustainable building products. Spending in this area has increased 5 fold since 2011 to a total revenue of $70 billion. An area of particular interest has been aimed at replacing fiberglass batt insulation with cellulose. Cellulose is the most abundant polymer on earth, and has potential to replace petroleum derived insulations. This project explores the potential of selectively isolating cellulose by depolymerizing the support structures found in lignocellulosic materials – specifically lignin and hemicellulose. The current focus is on isolating cellulose from Cannibas sativa, but more …


The Relationship Between Structural Parameters And Mechanical Properties Of Cactus Spines, Jorge Armando Martinez, Pamela Liz Szeto, Theresa Mae Stewart Jun 2017

The Relationship Between Structural Parameters And Mechanical Properties Of Cactus Spines, Jorge Armando Martinez, Pamela Liz Szeto, Theresa Mae Stewart

Materials Engineering

Considering an increasing interest in renewable, biodegradable resources that exhibit excellent mechanical properties, 24 species of cactus spines were investigated using three-point bend testing, X-ray diffraction (XRD) for structural parameters, and scanning electron microscopy (SEM) to analyze fracture surfaces. Additionally, a density of about 1.3 g/cm3 was measured for each spine utilizing the displacement method, closely matching existing data from literature. The flexural modulus varied greatly between species, ranging from 1.22 GPa (Echinocactus polycephalus) to 43.58 GPa (Stenocereus thurberi). In addition, flexural strength and strain to failure was also measured for each spine. XRD analysis of …


Feasibility Of Using 3d Printed Molds For Thermoforming Thermoplastic Composites, Sunil Bhandari May 2017

Feasibility Of Using 3d Printed Molds For Thermoforming Thermoplastic Composites, Sunil Bhandari

Electronic Theses and Dissertations

This thesis presents a novel combined experimental and numerical mechanics approach for characterizing 3D printed thermoplastic materials by the fused deposition modeling process for thermoforming thermoplastic composites. The implications of this work are:

  1. a methodology for model-based performance evaluation of 3D printed structural parts, and
  2. an improved design of 3D printed molds for composites manufacturing, which has potential for material innovations and scaled-up applications in additive manufacturing.

The thesis formulates basic criteria for selection of thermoplastic polymer used for the 3D printed mold based on forming temperatures. The thesis creates a lattice and shell finite element model of the 3D …


Life Cycle Sustainability Analysis (Lcsa) Of Polymer-Based Piping For Plumbing Applications, Andy J. Rivas Bolivar May 2017

Life Cycle Sustainability Analysis (Lcsa) Of Polymer-Based Piping For Plumbing Applications, Andy J. Rivas Bolivar

Senior Honors Projects, 2010-2019

Water conveyance systems play a critical role in modern developed areas. Polymer pipes have been used for about a century, and their convenient physical properties have positioned polymers as the leading material in the piping industry. Having such influence in the market means that changes in current material selection and manufacturing could lead to significant reductions in the footprint associated with their products. Currently, there are no comparative lifecycle assessments that evaluate the different polymer selections commercially available, which makes it hard to determine what products have the least impact on the environment. Understanding how such impacts are relative to …


Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu May 2017

Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu

Doctoral Dissertations

Carbon nanotubes (CNTs) exhibit a variety of exceptional properties, especially their ultrahigh tensile strength on the order of 100GPa show promise for constituting the next-generation carbon fiber. However, challenges remain to translate these properties into useful technology, primarily due to the sliding of the tubes past one another under tensile loading. The work presented in this dissertation is focused on enhancing the interaction between the CNTs and their bundles in a macro-assembly, in order to improve the tensile properties of the material.

Applying inter-tube crosslinks has been predicted to significantly enhance the stress transfer between the CNT components. We developed …


Formation Of Nanostructured Epoxy Networks Containing Polyhedral Oligomeric Silsesquioxane (Poss) And Silica Nanoparticles, Amit K. Sharma May 2017

Formation Of Nanostructured Epoxy Networks Containing Polyhedral Oligomeric Silsesquioxane (Poss) And Silica Nanoparticles, Amit K. Sharma

Dissertations

This dissertation is focused on structure-property-processing relationship studies based on well-defined polyhedral oligomeric silsesquioxane (POSS) modified epoxy networks to present a comprehensive understanding of hybrid network behavior. In this research, a monoamine functional POSS molecule is incorporated into the epoxy monomer as pendant unit to mimic common epoxy structures and then crosslinked to form well-defined epoxy hybrid networks. The POSS cages behave as nanosized pendant unit in the epoxy matrices, while the mass fraction of POSS cages is varied and the effects on physical properties are examined with respect to changes in network architecture.

A novel continuous reactor method is …