Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials

Old Dominion University

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Elastoplastic Quasi-Static And Impact Load Response Of Steel Structure Sub-Assemblage With Cfrp Strips, Ali Al Aloosi, Zia Razzaq Jan 2023

Elastoplastic Quasi-Static And Impact Load Response Of Steel Structure Sub-Assemblage With Cfrp Strips, Ali Al Aloosi, Zia Razzaq

Civil & Environmental Engineering Faculty Publications

Presented in this paper is the outcome of an experimental investigation of the elastoplastic quasi-static and impact load response of a steel sub-assemblage constructed using a pair of hollow square section members with or without Carbon Fiber Reinforced Polymer (CFRP) strips. The sub-assemblage consists of a long structural member welded to a short member, thus representing a typical combination of a column and a beam on the face of a multi-story steel building frame. The column is subjected to a lateral quasi-static or impact load. Tests are conducted on four separate steel sub-assemblages. The first two tests are conducted with …


Higher-Order Effects In Biaxial Flexure Of Gfrp I-Section Beams, Zia Razzaq, Faridoon Z. Razzaq Jan 2023

Higher-Order Effects In Biaxial Flexure Of Gfrp I-Section Beams, Zia Razzaq, Faridoon Z. Razzaq

Civil & Environmental Engineering Faculty Publications

A theoretical study of Glass Fiber Reinforced Polymer (GFRP) beams subjected to biaxial bending moments is presented with a focus on the influence of higher-order effects on maximum normal stresses. It is shown that the biaxial bending type of loading causes a dramatic increase in the maximum normal stress for a GFRP beam when induced torsional effects are included. The study demonstrates that the traditional first-order theory can grossly underestimate the maximum normal stress in a GFRP beam. Based on the numerical results presented using a higher-order theory which also accounts for induced warping normal stresses, the maximum normal stress …


Exposure To Pcb126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance, Brittany B. Rice, Keegan W. Sammons, Sara Y. Ngo Tenlep, Madeline T. Weltzer, Leryn J. Reynolds, Cetewayo S. Rashid, Hollie I. Swanson, Kevin J. Pearson Jan 2023

Exposure To Pcb126 During The Nursing Period Reversibly Impacts Early-Life Glucose Tolerance, Brittany B. Rice, Keegan W. Sammons, Sara Y. Ngo Tenlep, Madeline T. Weltzer, Leryn J. Reynolds, Cetewayo S. Rashid, Hollie I. Swanson, Kevin J. Pearson

Human Movement Sciences & Special Education Faculty Publications

Polychlorinated biphenyls (PCBs) are persistent environmental organic pollutants known to have detrimental health effects. Using a mouse model, we previously demonstrated that PCB126 exposure before and during pregnancy and throughout the perinatal period adversely affected offspring glucose tolerance and/or body composition profiles. The purpose of this study was to investigate the glucose tolerance and body composition of offspring born to dams exposed to PCB126 during the nursing period only. Female ICR mice were bred, and half of the dams were exposed to either vehicle (safflower oil) or 1 µmole PCB126 per kg of body weight via oral gavage on postnatal …


Effect Of Platelet Length And Stochastic Morphology On Flexural Behavior Of Prepreg Platelet Molded Composites, Siavash Sattar, Benjamin Beltran Laredo, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2023

Effect Of Platelet Length And Stochastic Morphology On Flexural Behavior Of Prepreg Platelet Molded Composites, Siavash Sattar, Benjamin Beltran Laredo, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Prepreg platelet molding compound (PPMC) can be used to create structural grade material with a heterogeneous mesoscale morphology. The present work considered various platelet lengths of the prepreg system IM7/8552 to study the effect of platelet length on the flexural behavior of PPMC composite. A progressive failure finite-element analysis was used to understand competing failure modes in PPMC with the different platelet length. The interlaminar and in-plane damage mechanisms were employed to describe complex failure modes within the mesostructure of PPMCs. Experimental results of the flexural tests of the PPMC with different platelet length sizes were used to validate the …


4,6-O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators And Their Applications For Multi-Component Gels, Pooja Sharma, Guijun Wang Mar 2022

4,6-O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators And Their Applications For Multi-Component Gels, Pooja Sharma, Guijun Wang

Chemistry & Biochemistry Faculty Publications

The self-assembly of carbohydrate-based low molecular weight gelators has led to useful advanced soft materials. The interactions of the gelators with various cations and anions are important in creating novel molecular architectures and expanding the scope of the small molecular gelators. In this study, a series of thirteen new C-2 carbamates of the 4,6-O-phenylethylidene acetalprotected D-glucosamine derivatives has been synthesized and characterized. These compounds are rationally designed from a common sugar template. All carbamates synthesized were found to be efficient gelators and three compounds are also hydrogelators. The resulting gels were characterized using optical microscopy, atomic force microscopy, …


Lateral-Torsional Instability And Biaxial Bending Of Imperfect Frp I-Beams, Jodi Knorowski, Stella B. Bondi, Zia Razzaq Jan 2022

Lateral-Torsional Instability And Biaxial Bending Of Imperfect Frp I-Beams, Jodi Knorowski, Stella B. Bondi, Zia Razzaq

Civil & Environmental Engineering Faculty Publications

This paper presents the outcome of a theoretical and experimental study of the behavior of Fiber Reinforced Polymer (FRP) I-beams exposed to lateral-torsional instability or when subjected to biaxial bending. Laboratory experiments involved the application of vertical and horizontal static loads to a 4 x 4 x ¼ in. I-beam with various lengths and the resulting deflections were recorded. Governing biaxial flexure and torsion differential equations were modified to account for the presence of initial imperfections and subsequently solved using a central finite-difference scheme. The theoretical predictions of the beam behavior were found to be in good agreement with what …


Spray Deposition Of Sustainable Plant Based Graphene In Thermosetting Carbon Fiber Laminates For Mechanical, Thermal, And Electrical Properties, Daniel W. Mulqueen, Siavash Sattar, Thienan Le, Oleksandr G. Kravchenko Jan 2022

Spray Deposition Of Sustainable Plant Based Graphene In Thermosetting Carbon Fiber Laminates For Mechanical, Thermal, And Electrical Properties, Daniel W. Mulqueen, Siavash Sattar, Thienan Le, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Graphene has generated substantial interest as a filler due to its exceptional strength, flexibility, and conductivity but faces obstacles in supply and implementation. A renewable, plant-based graphene nanoparticle (pGNP) presents a more accessible filler with the same properties as mineral graphenes. In this study, we examine the effects of pGNP, which was sprayed on a carbon fiber/epoxy prepreg at loadings from 1.1 to 4.2 g/m2. The study considered the mechanical, thermal, and electrical properties of pGNP-composite. An even particle dispersion was achieved using a spray application of pGNP in a water/alcohol suspension with the addition of surfactants and …


Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart Jan 2021

Charge Transport, Conductivity And Seebeck Coefficient In Pristine And Tcnq Loaded Preferentially Grown Metal Organic Frameworks, Xin Chen, Kai Zhang, Zeinab Mohammed Hassan, Engelbert Redel, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

This investigation on Metal-Organic Framework (MOF) HUKUST-1 films focuses on comparing the undoped pristine state and with the case of doping by TCNQ infiltration of the MOF pore structure. We have determined the temperature dependent charge transport and p-type conductivity for HKUST-1 films. Furthermore, the electrical conductivity and the current-voltage characteristics have been characterized in detail. Because the most common forms of MOFs, bulk MOF powders, do not lend themselves easily to electrical characterization investigations, here in this study the electrical measurements were performed on dense, compact surface-anchored metal-organic framework (SURMOF) films. These monolithic, well-defined, and (001) preferentially oriented MOF …


Loading Orientation Dependence On The Compressive Response Of Ice-Templated Ceramic-Polymer Composites, Sashanka Akurati, Justine Marin, Dipankar Ghosh Apr 2020

Loading Orientation Dependence On The Compressive Response Of Ice-Templated Ceramic-Polymer Composites, Sashanka Akurati, Justine Marin, Dipankar Ghosh

College of Engineering & Technology (Batten) Posters

Natural materials are made from weak constituents, yet exhibit an excellent synergy of high stiffness, strength, and damage-tolerance. They consist of alternate layers of the hard and soft phases with a complex hierarchical structural organization. The ice-templating technique provides an approach to fabricate multilayered architectures for engineering applications. In this technique, an aqueous ceramic suspension is solidified unidirectionally leading to phase separation into alternating layers of ice-crystals and ceramic particles. Ice-crystals are sublimated by freeze-drying process and resultant ceramic foams are sintered to impart strength. The fabricated sintered ceramic foams contain alternate layers of oriented ceramic lamella walls and pores. …


Effect Of Curing Rate On The Microstructure And Macroscopic Properties Of Epoxy Fiberglass Composites, Ammar Patel, Olesksandr Kravchenko, Ica Manas-Zloczower Jan 2018

Effect Of Curing Rate On The Microstructure And Macroscopic Properties Of Epoxy Fiberglass Composites, Ammar Patel, Olesksandr Kravchenko, Ica Manas-Zloczower

Mechanical & Aerospace Engineering Faculty Publications

Curing rates of an epoxy amine system were varied via different curing cycles, and glass-fiber epoxy composites were prepared using the same protocol, with the aim of investigating the correlation between microstructure and composite properties. It was found that the fast curing cycle resulted in a non-homogenous network, with a larger percentage of a softer phase. Homogenized composite properties, namely storage modulus and quasi-static intra-laminar shear strength, remained unaffected by the change in resin microstructure. However, fatigue tests revealed a significant reduction in fatigue life for composites cured at fast curing rates, while composites with curing cycles that allowed a …


The Role Of Microbial Exopolymers In Determining The Fate Of Oil And Chemical Dispersants In The Ocean, Antonietta Quigg, Uta Passow, Wei-Chun Chin, Chen Xu, Shawn Doyle, Laura Bretherton, Manoj Kamalanathan, Alicia K. Williams, Jason B. Sylvan, Zoe V. Finkel, Anthony H. Knap, Kathleen A. Schwehr, Saijin Zhang, Luni Sun, Terry L. Wade, Wassim Obeid, Patrick G. Hatcher, Peter H. Santschi Jan 2016

The Role Of Microbial Exopolymers In Determining The Fate Of Oil And Chemical Dispersants In The Ocean, Antonietta Quigg, Uta Passow, Wei-Chun Chin, Chen Xu, Shawn Doyle, Laura Bretherton, Manoj Kamalanathan, Alicia K. Williams, Jason B. Sylvan, Zoe V. Finkel, Anthony H. Knap, Kathleen A. Schwehr, Saijin Zhang, Luni Sun, Terry L. Wade, Wassim Obeid, Patrick G. Hatcher, Peter H. Santschi

Chemistry & Biochemistry Faculty Publications

The production of extracellular polymeric substances (EPS) by planktonic microbes can influence the fate of oil and chemical dispersants in the ocean through emulsification, degradation, dispersion, aggregation, and/or sedimentation. In turn, microbial community structure and function, including the production and character of EPS, is influenced by the concentration and chemical composition of oil and chemical dispersants. For example, the production of marine oil snow and its sedimentation and flocculent accumulation to the seafloor were observed on an expansive scale after the Deepwater Horizon oil spill in the Northern Gulf of Mexico in 2010, but little is known about the underlying …


Failure Modes For I-Section Gfrp Beams, Mamadou Konate, Zia Razzaq Jan 2015

Failure Modes For I-Section Gfrp Beams, Mamadou Konate, Zia Razzaq

Civil & Environmental Engineering Faculty Publications

This paper presents calculations for the failure modes for I-section Glass Fiber Reinforced Polymer (GFRP) beams with single mid-span web brace. Theoretical predictions are made using ASCE-LFRD Pre-Standard for FRP structures. For the member length considered, it is found that for small and medium I-sections the failure mode is governed by lateral-torsional buckling and for bigger I-sections the failure mode is governed by material rupture. The outcome of the predicted lateral-torsional buckling mode is compared with that observed experimentally.


Complementarities Of Probabilistic And Evidence Approaches: An Uncertainty Assessment For Selection Of Composite Material, Stella B. Bondi, Resit Unal, Patrick T. Hester, Trina M. Chytka Jul 2013

Complementarities Of Probabilistic And Evidence Approaches: An Uncertainty Assessment For Selection Of Composite Material, Stella B. Bondi, Resit Unal, Patrick T. Hester, Trina M. Chytka

Engineering Technology Faculty Publications

A complimentary probabilistic and evidence theory approach is utilized to enhance uncertainty assessments in the area of critical safety characteristics for conceptual design. This research provides additional exploration into the failure modes necessary to utilize Fiber Reinforced Polymer (FRP) and various composites to their fullest potential and to minimize uncertainty by comparing probability and evidence theories. This combined approach has been applied to a selection of composite material that could provide uncertainty assessment design for a space transportation system. Uncertainty estimates presented are bounded by belief and plausibility functions. The results may provide additional information to the decision makers in …


Flexural Rigidity Characterization Of Retrofitted Frp Plates, Steven J. Makonis Jr., Stella B. Bondi, Zia Razzaq Jan 2013

Flexural Rigidity Characterization Of Retrofitted Frp Plates, Steven J. Makonis Jr., Stella B. Bondi, Zia Razzaq

Civil & Environmental Engineering Faculty Publications

Presented herein is a procedure and numerical results for flexural rigidity characterization of Fiber Reinforced Polymer (FRP) plates retrofitted with various types of fabrics. The FRP plates were retrofitted with Kevlar® 49 (Aramid), Carbon Fiber (Harness-Satin H5), and Unidirectional Carbon Fiber (T700 Aerospace Grade) fabrics, respectively. The FRP plate flexural rigidity values were calculated with a central finitedifference iterative scheme while utilizing the experimental load-deflection relations based on bending tests. The tests were performed on each plate by applying a concentrated load at the center. A fourth-order partial differential equation of plate equilibrium was adopted to estimate the plate flexural …


Biaxial Bending And Lateral-Torsional Instability Of Imperfect Frp I-Beams Including Effects Of Retrofitting, Jodi Marie Knorowski Oct 2012

Biaxial Bending And Lateral-Torsional Instability Of Imperfect Frp I-Beams Including Effects Of Retrofitting, Jodi Marie Knorowski

Civil & Environmental Engineering Theses & Dissertations

This thesis presents the outcome of a theoretical and experimental study of the behavior of Fiber Reinforced Polymer (FRP) I-beams susceptible to lateral-torsional instability or when subjected to biaxial bending. Laboratory experiments involved application of vertical and horizontal static loads to a 4 x 4 x ¼ in. I-beam with various lengths, and the resulting displacement, twist, and strain were recorded. In the vertical direction, the beam was loaded from different reference load heights with respect to the shear center of the beam. The governing biaxial flexure and torsion differential equations were modified to account for the presence of initial …


A Least Squares Closure Approximation For Liquid Crystalline Polymers, Traci Ann Sievenpiper Apr 2011

A Least Squares Closure Approximation For Liquid Crystalline Polymers, Traci Ann Sievenpiper

Mathematics & Statistics Theses & Dissertations

An introduction to existing closure schemes for the Doi-Hess kinetic theory of liquid crystalline polymers is provided. A new closure scheme is devised based on a least squares fit of a linear combination of the Doi, Tsuji-Rey, Hinch-Leal I, and Hinch-Leal II closure schemes. The orientation tensor and rate-of-strain tensor are fit separately using data generated from the kinetic solution of the Smoluchowski equation. The known behavior of the kinetic solution and existing closure schemes at equilibrium is compared with that of the new closure scheme. The performance of the proposed closure scheme in simple shear flow for a variety …


Fiber Enhanced Viscoelastic Damping Polymers And Their Application To Passive Vibration Control, Houchun Xia Jul 1993

Fiber Enhanced Viscoelastic Damping Polymers And Their Application To Passive Vibration Control, Houchun Xia

Mechanical & Aerospace Engineering Theses & Dissertations

A new composite damping material is investigated, which consists of a viscoelastic matrix and high elastic modulus fiber inclusions. This fiber enhanced viscoelastic damping polymer is intended to be applied to light-weight flexible structures as surface treatment for passive vibration control. A desirable packing geometry for the composite material is proposed, which is expected to produce maximum shear strain in the viscoelastic damping matrix. Subsequently, a micromechanical model is established in which the effect of fiber segment length and relative motion between neighboring fibers are taken into account. Based on this model, closed form expressions for the effective storage and …


Analysis Of Moisture Absorption And Diffusion In Fiber Reinforced Polymeric Resin-Matrix Composite Materials, Stephen Stern Tompkins Apr 1978

Analysis Of Moisture Absorption And Diffusion In Fiber Reinforced Polymeric Resin-Matrix Composite Materials, Stephen Stern Tompkins

Mechanical & Aerospace Engineering Theses & Dissertations

The diffusion of moisture through fiber reinforced polymeric-matrix composite materials has been studied analytically. The diffusion in the orthotropic, nonhomogeneous material was modeled, in detail, with a two-dimensional transient diffusion analysis. An effective diffusivity for the composite was determined in terms of the fiber volume fraction and the resin diffusivity. This effective diffusivity is in better agreement with recent data than those previously determined using less complex models.

The influence of both material and environmental parameters on the moisture content of the composite was determined analytically. Predicted moisture contents were compared over a wide range of values for emittance, solar …