Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Petroleum Engineering

Edith Cowan University

2021

[RSTDPub]

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Physicochemical Characterisation Of Zirconia Nanoparticles Based Sodium Alginate Polymer Suspension For Enhanced Oil Recovery, Udit S. Mohanty, Faisal Ur Rahman Awan, Muhammad Ali, Adnan Aftab, Alireza Keshavarz, Sefan Iglauer Jan 2021

Physicochemical Characterisation Of Zirconia Nanoparticles Based Sodium Alginate Polymer Suspension For Enhanced Oil Recovery, Udit S. Mohanty, Faisal Ur Rahman Awan, Muhammad Ali, Adnan Aftab, Alireza Keshavarz, Sefan Iglauer

Research outputs 2014 to 2021

Biopolymers have been employed in enhanced oil recovery (EOR) due to their high viscosity and significant effects on waterflooding performance. Sodium alginate (NaAlg) is an excellent biopolymer that is extracted primarily from brown algae. It has been used in the biotechnology industry as a thickening agent, colloidal stabilizer, and oil recovery application. In the present study, a series of sodium alginate/zirconium oxide nanoparticle suspensions were prepared via solution mixing, and the effect of nanoparticle content, polymer concentration, temperature, salinity was investigated on the rheological behavior using a concentric cylinder dynamic rheometer. The rheology results revealed that the lower concentration of …


Shale Adhesion Force Measurements Via Atomic Force Microscopy, Nikolai Mitiurev, Michael Verrall, Svetlana Shilobreeva, Alireza Keshavarz, Stefan Iglauer Jan 2021

Shale Adhesion Force Measurements Via Atomic Force Microscopy, Nikolai Mitiurev, Michael Verrall, Svetlana Shilobreeva, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of sedimentary rock surface is an essential parameter that defines oil recovery and production rates of a reservoir. The discovery of wettability alteration in reservoirs, as well as complications that occur in analysis of heterogeneous sample, such as shale, for instance, have prompted scientists to look for the methods of wettability assessment at nanoscale. At the same time, bulk techniques, which are commonly applied, such as USBM (United States Bureau of Mines) or Amott tests, are not sensitive enough in cases with mixed wettability of rocks as they provide average wettability values of a core plug. Atomic Force Microscopy …