Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Revised Semiempirical Approach To Predict The Occurrence Of Twinning In Titanium Alloys, Chirag Dhirajlal Rabadia, Syed Faraz Jawed, Jincheng Wang, Milind Siddhpura, Arti Siddhpura Dec 2021

Revised Semiempirical Approach To Predict The Occurrence Of Twinning In Titanium Alloys, Chirag Dhirajlal Rabadia, Syed Faraz Jawed, Jincheng Wang, Milind Siddhpura, Arti Siddhpura

Research outputs 2014 to 2021

A revised semiempirical approach, considering the average values of the valence electron to atom ratio (e/a̅) and a difference in atomic radii of alloying element/s and the base element (Δr¯), is proposed to predict the twin formation in titanium alloys. The revised e/ā versus Δr¯ diagram is plotted, considering the reported results of 90 titanium alloys fabricated using various processing methods. A new twin/slip boundary has been plotted and recommended based on the revised e/ā versus Δr¯ diagram. The conventional maximum limit reported for the twinning in titanium alloys is e/ā = 4.20; however, it has been found that twinning …


Α-Fe2o3/Graphene Oxide Powder And Thin Film Nanocomposites As Peculiar Photocatalysts For Dye Removal From Wastewater, Mahsa Khoshnam, Javad Farahbakhsh, Masoumeh Zargar, Abdul Wahab Mohammad, Abdelbaki Benamor, Wei Lun Ang, Ebrahim Mahmoudi Dec 2021

Α-Fe2o3/Graphene Oxide Powder And Thin Film Nanocomposites As Peculiar Photocatalysts For Dye Removal From Wastewater, Mahsa Khoshnam, Javad Farahbakhsh, Masoumeh Zargar, Abdul Wahab Mohammad, Abdelbaki Benamor, Wei Lun Ang, Ebrahim Mahmoudi

Research outputs 2014 to 2021

In this study, hematite graphene oxide (αFe2O3-GO) powder nanocomposites and thin-film hematite graphene oxide (αFe2O3-GO) were synthesized for application in the removal of Rhodamine B (RhB) from textile wastewater. αFe2O3-GO nanomaterials were placed onto the FTO substrate to form a thin layer of nanocomposites. Different analysis including XRD, FTIR, Raman spectra, XPS, and FESEM were done to analyze the morphology, structure, and properties of the synthesized composites as well as the chemical interactions of αFe2O3 with GO. The photocatalytic performance of two synthesized composites was compared with different concentrations of αFe2O3-GO. The results showed that powder nanocomposites are more effective …


Recent Progress Trend On Abrasive Waterjet Cutting Of Metallic Materials: A Review, Jennifer Milaor Llanto, Majid Tolouei-Rad, Ana Vafadar, Muhammad Aamir Jan 2021

Recent Progress Trend On Abrasive Waterjet Cutting Of Metallic Materials: A Review, Jennifer Milaor Llanto, Majid Tolouei-Rad, Ana Vafadar, Muhammad Aamir

Research outputs 2014 to 2021

Abrasive water jet machining has been extensively used for cutting various materials. In particular, it has been applied for difficult-to-cut materials, mostly metals, which are used in various manufacturing processes in the fabrication industry. Due to its vast applications, in-depth comprehension of the systems behind its cutting process is required to determine its effective usage. This paper presents a review of the progress in the recent trends regarding abrasive waterjet cutting application to extend the understanding of the significance of cutting process parameters. This review aims to append a substantial understanding of the recent improvement of abrasive waterjet machine process …


A Comprehensive Comparative Investigation On Solar Heating And Cooling Technologies From A Thermo-Economic Viewpoint—A Dynamic Simulation, Hassan Jafari Mosleh, Pooria Behnam, Maryam Abbasi Kamazani, Omid Mohammadi, Soheil Kavian, Pouria Ahmadi, Marc A. Rosen Jan 2021

A Comprehensive Comparative Investigation On Solar Heating And Cooling Technologies From A Thermo-Economic Viewpoint—A Dynamic Simulation, Hassan Jafari Mosleh, Pooria Behnam, Maryam Abbasi Kamazani, Omid Mohammadi, Soheil Kavian, Pouria Ahmadi, Marc A. Rosen

Research outputs 2014 to 2021

© 2020 The Authors. Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd. The yearly thermo-economic performance is dynamically investigated for three solar heating and cooling systems: solar heating and absorption cooling (SHAC), solar heating and ejector cooling (SHEC), and heating and solar vapor compression cooling (HSVC). First, the effects of important design parameters on the thermo-economic performance of the systems to supply the heating and cooling loads of the building are evaluated. The systems are parametrically analyzed with the weather conditions of Tehran, Iran. The results show that the life cycle …


Experimental Study On Repeatedly Loaded Foundation Soil Strengthened By Wraparound Geosynthetic Reinforcement Technique, Muhammad Nouman Amjad Raja, Sanjay K. Shukla Jan 2021

Experimental Study On Repeatedly Loaded Foundation Soil Strengthened By Wraparound Geosynthetic Reinforcement Technique, Muhammad Nouman Amjad Raja, Sanjay K. Shukla

Research outputs 2014 to 2021

In the recent past, the potential benefits of wraparound geosynthetic reinforcement technique for constructing the reinforced soil foundations have been reported. This paper presents the experimental study on the behaviour of model strip footing resting on sandy soil bed reinforced with geosynthetic in wraparound and planar forms under monotonic and repeated loadings. The geosynthetic layers were laid according to the reinforcement ratio to minimise the scale effect. It is found that for the same amount of reinforcement material, the wraparound reinforced model resulted in less settlement in comparison to planar reinforced models. The efficiency of wraparound reinforced model increased with …


Evaluation Of The Surface Defects And Dimensional Tolerances In Multi-Hole Drilling Of Aa5083, Aa6061, And Aa2024, Muhammad Aamir, Majid Tolouei Rad, Khaled Giasin, Ana Vafadar, Ugur Koklu, William Keeble Jan 2021

Evaluation Of The Surface Defects And Dimensional Tolerances In Multi-Hole Drilling Of Aa5083, Aa6061, And Aa2024, Muhammad Aamir, Majid Tolouei Rad, Khaled Giasin, Ana Vafadar, Ugur Koklu, William Keeble

Research outputs 2014 to 2021

Drilling is one of the most performed machining operations for riveting and assembly operations in many industrial sectors. The accuracy of the drilled holes and their surface finish play a vital role in the longevity and performance of the machined components, which, in turn, increase productivity. Therefore, this study investigated the effect of the multi-spindle drilling process on dimensional hole tolerances, such as hole size, circularity, cylindricity, and perpendicularity. In addition, the surface defects formed in the holes were examined using scanning electron microscopy. Three aluminium alloys, AA2024, AA6061, and AA5083, which are commonly used in the aerospace, automotive, and …


Sub-Micron Moulding Topological Mass Transport Regimes In Angled Vortex Fluidic Flow, Thaar M. D. Alharbi, Matt Jellicoe, Xuan Luo, Kasturi Vimalanathan, Ibrahim K. Alsulami, Bediea S. Al Harbi, Aghil Igder, Fayed A. J. Alrashaidi, Xianjue Chen, Keith A. Stubbs, Justin M. Chalker, Wei Zhang, Ramiz A. Boulos, Darryl B. Jones, Jamie S. Quinton, Colin L. Raston Jan 2021

Sub-Micron Moulding Topological Mass Transport Regimes In Angled Vortex Fluidic Flow, Thaar M. D. Alharbi, Matt Jellicoe, Xuan Luo, Kasturi Vimalanathan, Ibrahim K. Alsulami, Bediea S. Al Harbi, Aghil Igder, Fayed A. J. Alrashaidi, Xianjue Chen, Keith A. Stubbs, Justin M. Chalker, Wei Zhang, Ramiz A. Boulos, Darryl B. Jones, Jamie S. Quinton, Colin L. Raston

Research outputs 2014 to 2021

Shear stress in dynamic thin films, as in vortex fluidics, can be harnessed for generating non-equilibrium conditions, but the nature of the fluid flow is not understood. A rapidly rotating inclined tube in the vortex fluidic device (VFD) imparts shear stress (mechanical energy) into a thin film of liquid, depending on the physical characteristics of the liquid and rotational speed,ω, tilt angle,θ, and diameter of the tube. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries of the glass surface and the meniscus that determines the liquid film thickness, we have established specific topological mass transport regimes. …


Corrosion Behavior And Characteristics Of Passive Films Of Laser Powder Bed Fusion Produced Ti-6al-4v In Dynamic Hank’S Solution, Liang-Yu Chen, Hong-Yue Zhang, Chuanbo Zheng, Hong-Yu Yang, Peng Qin, Cuihua Zhao, Sheng Lu, Shun-Xing Liang, Linjiang Chai, Lai-Chang Zhang Jan 2021

Corrosion Behavior And Characteristics Of Passive Films Of Laser Powder Bed Fusion Produced Ti-6al-4v In Dynamic Hank’S Solution, Liang-Yu Chen, Hong-Yue Zhang, Chuanbo Zheng, Hong-Yu Yang, Peng Qin, Cuihua Zhao, Sheng Lu, Shun-Xing Liang, Linjiang Chai, Lai-Chang Zhang

Research outputs 2014 to 2021

The corrosion behavior of laser powder bed fusion produced (L-PBF-produced) titanium alloys involving flowing body fluid is still unclear. Therefore, this work investigates in vitro corrosion behavior and the characteristics of passive films formed on L-PBF-produced Ti–6Al–4V in both static and dynamic Hank’s solutions. Electrochemical measurements, immersion tests, X-ray photoelectron spectroscopy and scanning electron microscopy were conducted. In comparison to the L-PBF-produced Ti–6Al–4V in static Hank’s solution, the samples showed lower charge transfer resistance and higher passivation current density (anodic current density as well) in dynamic Hank’s solution. Meanwhile, a more apparent deposition of apatite and hydroxyapatite is found on …


Green Underwater Wireless Communications Using Hybrid Optical-Acoustic Technologies, Kazi Y. Islam, Iftekhar Ahmad, Daryoush Habibi, M. Ishtiaque A. Zahed, Joarder Kamruzzaman Jan 2021

Green Underwater Wireless Communications Using Hybrid Optical-Acoustic Technologies, Kazi Y. Islam, Iftekhar Ahmad, Daryoush Habibi, M. Ishtiaque A. Zahed, Joarder Kamruzzaman

Research outputs 2014 to 2021

Underwater wireless communication is a rapidly growing field, especially with the recent emergence of technologies such as autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs). To support the high-bandwidth applications using these technologies, underwater optics has attracted significant attention, alongside its complementary technology – underwater acoustics. In this paper, we propose a hybrid opto-acoustic underwater wireless communication model that reduces network power consumption and supports high-data rate underwater applications by selecting appropriate communication links in response to varying traffic loads and dynamic weather conditions. Underwater optics offers high data rates and consumes less power. However, due to the severe …


Physical Vapor-Deposited Silver (Ag)-Based Metal-Dielectric Nanocomposites For Thin-Film And Coating Applications, Mohammad Nur-E-Alam, Mohammad Kairul Basher, Mikhail Vasiliev, Narottam Das Jan 2021

Physical Vapor-Deposited Silver (Ag)-Based Metal-Dielectric Nanocomposites For Thin-Film And Coating Applications, Mohammad Nur-E-Alam, Mohammad Kairul Basher, Mikhail Vasiliev, Narottam Das

Research outputs 2014 to 2021

Metallic thin-film materials and nanoparticles (mainly silver (Ag)-based) are recently being used in many nano-technological applications, including sensors, reflective heat-mirror coatings, and antibacterial coatings. The physical vapor deposition technique has attracted significant attention for Ag-based nanocomposites with tailoring of the structural and optical properties of metallic thin films, thus allowing for further improvements and application possibilities in various existing fields, namely electronics, catalysis, magnetics, and optics, alongside the environment and health and new emergent fields, particularly thin-film coatings. This study highlights the preparation, characterization, properties, and possible future application directions of several types of silver (Ag)-based nanocomposite thin films prepared …


Recent Advancements In The Application Of New Monomers And Membrane Modification Techniques For The Fabrication Of Thin Film Composite Membranes: A Review, Javad Farahbakhsh, Vahid Vatanpour, Mahsa Khoshnam, Masoumeh Zargar Jan 2021

Recent Advancements In The Application Of New Monomers And Membrane Modification Techniques For The Fabrication Of Thin Film Composite Membranes: A Review, Javad Farahbakhsh, Vahid Vatanpour, Mahsa Khoshnam, Masoumeh Zargar

Research outputs 2014 to 2021

Thin film composite (TFC) membranes have been experiencing significant modifications recently aiming to improve their structure, properties and separation efficiency. One of the promising modifications to tailor the membranes more efficient is changing the materials used. m-phenylene diamine (MPD), piperazine (PIP), and trimesoyl chloride (TMC) are the most common monomers used to fabricate TFC membranes. Recent studies have introduced several alternatives to these traditional monomers showing significant contribution of these monomers to the physicochemical properties of the membranes (e.g., surface roughness, hydrophilicity, cross-linking density, chemical structure) as well as membranes' separation efficiency. Emergence of more favorable functional groups such as …


Photodegradation Of Reactive Blue 19 Dye Using Magnetic Nanophotocatalyst Α-Fe2o3/Wo3: A Comparison Study Of Α-Fe2o3/Wo3 And Wo3/Naoh, Mohammad Delnavaz, Javad Farahbakhsh, Seyed Sajad Mahdian Jan 2021

Photodegradation Of Reactive Blue 19 Dye Using Magnetic Nanophotocatalyst Α-Fe2o3/Wo3: A Comparison Study Of Α-Fe2o3/Wo3 And Wo3/Naoh, Mohammad Delnavaz, Javad Farahbakhsh, Seyed Sajad Mahdian

Research outputs 2014 to 2021

The photocatalytic degradation of reactive blue 19 (RB19) dye was investigated in a slurry system using ultraviolet (UV) and light-emitting diode (LED) lamps as light sources and using magnetic tungsten trioxide nanophotocatalysts (α-Fe2O3/WO3 and WO3/NaOH) as photocatalysts. The effects of different parameters including irradiation time, initial concentration of RB19, nanophotocatalyst dosage, and pH were examined. The magnetic nanophotocatalysts were also characterized with different methods including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), differential reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM). The XRD and FTIR …


A Range Error Reduction Technique For Positioning Applications In Sports, Adnan Waqar, Iftekhar Ahmad, Daryoush Habibi, Quoc V. Phung Jan 2021

A Range Error Reduction Technique For Positioning Applications In Sports, Adnan Waqar, Iftekhar Ahmad, Daryoush Habibi, Quoc V. Phung

Research outputs 2014 to 2021

In recent times, ultra-wideband (UWB)-based positioning systems have become popular in sport performance monitoring. UWB positioning system uses time of arrival to calculate the range data between devices (i.e. anchors, tags), and then use trilateration algorithms to estimate position coordinates. In practical applications, non-line-of-sight transmissions and multipath propagations lead to inaccurate range data and lower positioning accuracy. This paper introduces a range error minimisation algorithm to address this limitation of error in range data in UWB-based positioning system. The proposed solution analyses the range error for each anchor and sequentially reduces this error based on the distance between each anchor …


Physicochemical Characterisation Of Zirconia Nanoparticles Based Sodium Alginate Polymer Suspension For Enhanced Oil Recovery, Udit S. Mohanty, Faisal Ur Rahman Awan, Muhammad Ali, Adnan Aftab, Alireza Keshavarz, Sefan Iglauer Jan 2021

Physicochemical Characterisation Of Zirconia Nanoparticles Based Sodium Alginate Polymer Suspension For Enhanced Oil Recovery, Udit S. Mohanty, Faisal Ur Rahman Awan, Muhammad Ali, Adnan Aftab, Alireza Keshavarz, Sefan Iglauer

Research outputs 2014 to 2021

Biopolymers have been employed in enhanced oil recovery (EOR) due to their high viscosity and significant effects on waterflooding performance. Sodium alginate (NaAlg) is an excellent biopolymer that is extracted primarily from brown algae. It has been used in the biotechnology industry as a thickening agent, colloidal stabilizer, and oil recovery application. In the present study, a series of sodium alginate/zirconium oxide nanoparticle suspensions were prepared via solution mixing, and the effect of nanoparticle content, polymer concentration, temperature, salinity was investigated on the rheological behavior using a concentric cylinder dynamic rheometer. The rheology results revealed that the lower concentration of …


Shale Adhesion Force Measurements Via Atomic Force Microscopy, Nikolai Mitiurev, Michael Verrall, Svetlana Shilobreeva, Alireza Keshavarz, Stefan Iglauer Jan 2021

Shale Adhesion Force Measurements Via Atomic Force Microscopy, Nikolai Mitiurev, Michael Verrall, Svetlana Shilobreeva, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of sedimentary rock surface is an essential parameter that defines oil recovery and production rates of a reservoir. The discovery of wettability alteration in reservoirs, as well as complications that occur in analysis of heterogeneous sample, such as shale, for instance, have prompted scientists to look for the methods of wettability assessment at nanoscale. At the same time, bulk techniques, which are commonly applied, such as USBM (United States Bureau of Mines) or Amott tests, are not sensitive enough in cases with mixed wettability of rocks as they provide average wettability values of a core plug. Atomic Force Microscopy …


Neutron Scattering: A Subsurface Application Review, Mirhasan Hosseini, Muhammad Arif, Alireza Keshavarz, Stefan Iglauer Jan 2021

Neutron Scattering: A Subsurface Application Review, Mirhasan Hosseini, Muhammad Arif, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Geomaterials and filling fluids properties that are pertinent to a geologic porous media can be characterized using a range of methods, such as nuclear magnetic resonance, X-rays, infrared spectroscopy, and neutron scattering (NS). In this context, NS features as an important tool elucidate key properties of a porous medium, which has recently gained significant attention. Key rock properties that can be measured by NS include: rock texture (i.e. crystallographic preferred orientation), mechanical properties (i.e. stress and strain) as well as porous medium properties (pore porosity, pore size and connectivity). In addition, NS imaging can help elucidate the phase behaviour of …


Analysis Of Gps And Uwb Positioning System For Athlete Tracking, Adnan Waqar, Iftekhar Ahmad, Daryoush Habibi, Quoc Viet Phung Jan 2021

Analysis Of Gps And Uwb Positioning System For Athlete Tracking, Adnan Waqar, Iftekhar Ahmad, Daryoush Habibi, Quoc Viet Phung

Research outputs 2014 to 2021

In recent years, wearable performance monitoring systems have become increasingly popular in competitive sports. Wearable devices can provide vital information including distance covered, velocity, change of direction, and acceleration, which can be used to improve athlete performance and prevent injuries. Tracking technology that monitors the movement of an athlete is an important element of sport wearable devices. For tracking, the cheapest option is to use global positioning system (GPS) data however, their large margins of error are a major concern in many sports. Consequently, indoor positioning systems (IPS) have become popular in sports in recent years where the ultra-wideband (UWB) …


Predicting The Settlement Of Geosynthetic-Reinforced Soil Foundations Using Evolutionary Artificial Intelligence Technique, Muhammad Nouman Amjad Raja, Sanjay K. Shukla Jan 2021

Predicting The Settlement Of Geosynthetic-Reinforced Soil Foundations Using Evolutionary Artificial Intelligence Technique, Muhammad Nouman Amjad Raja, Sanjay K. Shukla

Research outputs 2014 to 2021

In order to ensure safe and sustainable design of geosynthetic-reinforced soil foundation (GRSF), settlement prediction is a challenging task for practising civil/geotechnical engineers. In this paper, a new hybrid technique for predicting the settlement of GRSF has been proposed based on the combination of evolutionary algorithm, that is, grey-wolf optimisation (GWO) and artificial neural network (ANN), abbreviated as ANN-GWO model. For this purpose, the reliable pertinent data were generated through numerical simulations conducted on validated large-scale 3-D finite element model. The predictive power of the model was assessed using various well-established statistical indices, and also validated against several independent scientific …


Current Advances In Syngas (Co + H2) Production Through Bi-Reforming Of Methane Using Various Catalysts: A Review, U. S. Mohanty, Muhammad Ali, Muhammad Rizwan Azhar, Ahmed Al-Yaseri, Alireza Keshavarz, Stefan Iglauer Jan 2021

Current Advances In Syngas (Co + H2) Production Through Bi-Reforming Of Methane Using Various Catalysts: A Review, U. S. Mohanty, Muhammad Ali, Muhammad Rizwan Azhar, Ahmed Al-Yaseri, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Today, bi - reforming of methane is considered as an emerging replacement for the generation of high-grade synthesis gas (H2:CO = 2.0), and also as an encouraging renewable energy substitute for fossil fuel resources. For achieving high conversion levels of CH4, H2O, and CO2 in this process, appropriate operation variables such as pressure, temperature and molar feed constitution are prerequisites for the high yield of synthesis gas. One of the biggest stumbling blocks for the methane reforming reaction is the sudden deactivation of catalysts, which is attributed to the sintering and coke formation …


Co2 – Brine – Sandstone Wettability Evaluation At Reservoir Conditions Via Nuclear Magnetic Resonance Measurements, Auby Baban, Ahmed Al-Yaseri, Alireza Keshavarz, R. Amin, Stefan Iglauer Jan 2021

Co2 – Brine – Sandstone Wettability Evaluation At Reservoir Conditions Via Nuclear Magnetic Resonance Measurements, Auby Baban, Ahmed Al-Yaseri, Alireza Keshavarz, R. Amin, Stefan Iglauer

Research outputs 2014 to 2021

CO2-rock wettability is a key parameter which governs CO2 trapping capacities and containment security in the context of CO2 geo-sequestration schemes. However, significant uncertainties still exist in terms of predicting CO2 rock wettability at true reservoir conditions. This study thus reports on wettability measurements via independent Nuclear Magnetic Resonance (NMR) experiments on sandstone (CO2–brine systems) to quantify Wettability Indices (WI) using the United States Bureau of Mines (USBM) scale. The results show that CO2 (either molecularly dissolved or as a separate supercritical phase) significantly reduced the hydrophilicity of the sandstone from strongly …


The Effect Of Tin-, Ticn-, Tialn-, And Tisin Coated Tools On The Surface Defects And Geometric Tolerances Of Holes In Multi-Spindle Drilling Of Al2024 Alloy, Muhammad Aamir, Adrian Davis, William Keeble, Ugur Koklu, Khaled Giasin, Ana Vafadar, Majid Tolouei Rad Jan 2021

The Effect Of Tin-, Ticn-, Tialn-, And Tisin Coated Tools On The Surface Defects And Geometric Tolerances Of Holes In Multi-Spindle Drilling Of Al2024 Alloy, Muhammad Aamir, Adrian Davis, William Keeble, Ugur Koklu, Khaled Giasin, Ana Vafadar, Majid Tolouei Rad

Research outputs 2014 to 2021

The integrity of machined holes depends on many parameters, some of which are related to the cutting tool (geometry, coating, material). Other influential parameters are related to the machining process variables (spindle speed, feed rate, workpiece material), all of which can affect the quality of the hole and drilling induced damage on its surface. This study investigates the effect of uncoated tools and four types of tool coatings (TiN-, TiCN-, TiAlN-, and TiSiN) on the hole quality and its microstructure. The study analyzed several hole geometrical metrics, namely hole size, circularity, cylindricity, and perpendicularity of an Al2024 aluminum alloy using …


Experimental Investigation Of Pressure Drop Performance Of Smooth And Dimpled Single Plate-Fin Heat Exchangers, Kanishk Rauthan, Ferdinando G. Guzzomi, Ana Vafadar, Kevin Hayward, Aakash Hurry Jan 2021

Experimental Investigation Of Pressure Drop Performance Of Smooth And Dimpled Single Plate-Fin Heat Exchangers, Kanishk Rauthan, Ferdinando G. Guzzomi, Ana Vafadar, Kevin Hayward, Aakash Hurry

Research outputs 2014 to 2021

Passive heat exchangers (HXs) form an inseparable part of the manufacturing industry as they provide high-efficiency cooling at minimal overhead costs. Along with the aspects of high thermal cooling, it is essential to monitor pressure loss while using plate-fin HXs because pressure loss can introduce additional power costs to a system. In this paper, an experimental study was conducted to look at the effects of dimples on the pressure drop characteristics of single plate-fin heat exchangers. To enable this, different configurations of National Advisory Committee for Aeronautics (NACA) fins with smooth surfaces and 2 mm-diameter dimples, 4 mm-diameter dimples and …


Analysis Of Hole Quality And Chips Formation In The Dry Drilling Process Of Al7075-T6, Numan Habib, Aamer Sharif, Aquib Hussain, Muhammad Aamir, Khaled Giasin, Danil Yurievich Pimenov, Umair Ali Jan 2021

Analysis Of Hole Quality And Chips Formation In The Dry Drilling Process Of Al7075-T6, Numan Habib, Aamer Sharif, Aquib Hussain, Muhammad Aamir, Khaled Giasin, Danil Yurievich Pimenov, Umair Ali

Research outputs 2014 to 2021

Millions of holes are produced in many industries where efficient drilling is considered the key factor in their success. High-quality holes are possible with the proper selection of drilling process parameters, appropriate tools, and machine setup. This paper deals with the effects of drilling parameters such as spindle speed and feed rate on the chips analysis and the hole quality like surface roughness, hole size, circularity, and burr formation. Al7075-T6 alloy, commonly used in the aerospace industry, was used for the drilling process, and the dry drilling experiments were performed using high-speed steel drill bits. Results have shown that surface …


Experimental Validation Of Bulk-Graphene As A Thermoelectric Generator, Muhammad Uzair Khan, Amir Naveed, Syed Ehtisham Gillani, Dawar Awan, Muhammad Arif, Shaista Afridi, Muhammad Hamyun, Muhammad Asif, Saadia Tabassum, Muhammad Sadiq, Muhammad Lais, Muhammad Aslam, Saeed Ullah Jan, Zeeshan Ahad Jan 2021

Experimental Validation Of Bulk-Graphene As A Thermoelectric Generator, Muhammad Uzair Khan, Amir Naveed, Syed Ehtisham Gillani, Dawar Awan, Muhammad Arif, Shaista Afridi, Muhammad Hamyun, Muhammad Asif, Saadia Tabassum, Muhammad Sadiq, Muhammad Lais, Muhammad Aslam, Saeed Ullah Jan, Zeeshan Ahad

Research outputs 2014 to 2021

Quest for alternate energy sources is the core of most of the research activities these days. No matter how small or large amount of energy can be produced by utilizing the non-conventional techniques and sources, every bit of innovation can reshape the future of energy. In this work, experimental analysis of the thermoelectric (TE) properties of bulk-graphene in the temperature range of (303 to 363) K is presented. Graphene powder was pressed to form a pellet which was used to fabricate the TE device. The effects of temperature on the Seebeck coefficient, electrical and thermal conductivities, and the dimensionless figure …


Effect Of Cutting Parameters And Tool Geometry On The Performance Analysis Of One-Shot Drilling Process Of Aa2024-T3, Muhammad Aamir, Khaled Giasin, Majid Tolouei-Rad, Israr Ud Din, Muhammad I. Hanif, Ugur Kuklu, Danil Y. Pimenov, Muhammad Ikhlaq Jan 2021

Effect Of Cutting Parameters And Tool Geometry On The Performance Analysis Of One-Shot Drilling Process Of Aa2024-T3, Muhammad Aamir, Khaled Giasin, Majid Tolouei-Rad, Israr Ud Din, Muhammad I. Hanif, Ugur Kuklu, Danil Y. Pimenov, Muhammad Ikhlaq

Research outputs 2014 to 2021

Drilling is an important machining process in various manufacturing industries. High-quality holes are possible with the proper selection of tools and cutting parameters. This study investigates the effect of spindle speed, feed rate, and drill diameter on the generated thrust force, the formation of chips, post-machining tool condition, and hole quality. The hole surface defects and the top and bottom edge conditions were also investigated using scan electron microscopy. The drilling tests were carried out on AA2024-T3 alloy under a dry drilling environment using 6 and 10 mm uncoated carbide tools. Analysis of Variance was employed to further evaluate the …