Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Oil, Gas, and Energy

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 599

Full-Text Articles in Engineering

Will Saf Turbocharge The Corn Ethanol Market?, Richard Perrin, Lilyan Fulginiti, Felipe Miranda De Souza Almeida Mar 2024

Will Saf Turbocharge The Corn Ethanol Market?, Richard Perrin, Lilyan Fulginiti, Felipe Miranda De Souza Almeida

Cornhusker Economics

The long-run outlook for the corn ethanol industry is questionable, due to a transition to electric and hybrid vehicles. One source of hope for the long run is the potential demand for producing Sustainable Aviation Fuel (SAF). SAF is a key component in the United States Aviation Climate Action Plan, a path to net-zero greenhouse gas (GHG) emissions in the aviation industry by 2050. Demand for ethanol for SAF offers hope to the ethanol industry, but it depends a great deal on policy decisions that are being made now. Here we sketch out this story.

Based on the information available …


Producer Long-Term Marketing Opportunities With Ethanol Plants, Austin Harthoorn, Logan Lloyd, Cory Walters, Kate Brooks May 2023

Producer Long-Term Marketing Opportunities With Ethanol Plants, Austin Harthoorn, Logan Lloyd, Cory Walters, Kate Brooks

Cornhusker Economics

Commodity marketing operates in a complex decision environment with constant information flow, which can conceal long-run financially profitable marketing opportunities for producers. In the corn marketing space, the competitive role of ethanol plants throughout the state may provide producers with long-run financial gains by strategically approaching marketing decisions. In this article, we characterize whether producers can gain financially from strategically marketing corn to ethanol plants. For example, do ethanol plants provide a better long-run return from pre-harvest hedging, spring sale, or harvest sale?

We investigate three important contracting times--forward contract for harvest delivery (called pre-harvest hereafter), harvest delivery, and spring …


Unleash The Heat: Exploring Geothermal Energy Perspectives And Energy Literacy In São Miguel, Azores, Lena Mcdonough Apr 2023

Unleash The Heat: Exploring Geothermal Energy Perspectives And Energy Literacy In São Miguel, Azores, Lena Mcdonough

Independent Study Project (ISP) Collection

The green energy transition is moving ahead in EU countries at very different paces, and there are some key challenges that all regions currently face in trying to phase fossil fuels out of their energy mixes. One of these challenges is that most regions simply cannot harness enough renewable energy sources and simultaneously have the storage technology for creating a baseload power source as reliable as oil, coal and natural gas. That is, unless you sit in the middle of the Atlantic Ocean on the boundary of three tectonic plates, with a continuous and reliable renewable energy source beneath your …


Alternatives To Reducing Aviation Fuel-Burn With Technology: Fully Electric Autonomous Taxibot, Denzil Neo Jan 2023

Alternatives To Reducing Aviation Fuel-Burn With Technology: Fully Electric Autonomous Taxibot, Denzil Neo

Student Works

Aircraft taxiing operations in the aerodrome were identified to consume the most jet fuel apart from the cruise phase of the flight. This was also well supported by various research associating taxi operations at large, congested airports, with high jet fuel consumption, high carbon emissions, and noise pollution. Existing literature recognised the potential to address the environmental issues of aerodrome taxi operations by operating External or Onboard Aircraft Ground Propulsion Systems (AGPS). Designed to power aircraft with sources other than their main engines, external Aircraft Ground Power Systems (AGPS) have shown the potential to significantly cut jet fuel consumption and …


Design, Development, And Characterization Of Highly Efficient Colored Photovoltaic Module For Sustainable Buildings Applications, Mohammad Khairul Basher, Mohammad Nur-E-Alam, Momtazur Rahman, Steven Hinckley, Kamal Alameh Apr 2022

Design, Development, And Characterization Of Highly Efficient Colored Photovoltaic Module For Sustainable Buildings Applications, Mohammad Khairul Basher, Mohammad Nur-E-Alam, Momtazur Rahman, Steven Hinckley, Kamal Alameh

Research outputs 2022 to 2026

The building integrated photovoltaic (BIPV) system is one of the contributors which has enormous potential to reach the goal of net-zero energy buildings (NZEB) that significantly reduce the use of fossil fuels that contribute to global warming. However, the limitations of the visual and aesthetic appearance of current BIPV systems make this aspiration unlikely. This study investigates the limitations of the single-color-based PV modules that are dull in appearance and have low photo-conversion efficiency (PCE). In order to solve this issue, we designed, developed, and characterized micro-patterned-based multicolored photovoltaic (MPCPV) modules which are applicable to net-zero building and development. Our …


Application Of Machine Learning To Predict The Performance Of An Emipg Reactor Using Data From Numerical Simulations, Owen Sedej, Eric G. Mbonimpa, Trevor Sleight, Jeremy Slagley Mar 2022

Application Of Machine Learning To Predict The Performance Of An Emipg Reactor Using Data From Numerical Simulations, Owen Sedej, Eric G. Mbonimpa, Trevor Sleight, Jeremy Slagley

Faculty Publications

Microwave-driven plasma gasification technology has the potential to produce clean energy from municipal and industrial solid wastes. It can generate temperatures above 2000 K (as high as 30,000 K) in a reactor, leading to complete combustion and reduction of toxic byproducts. Characterizing complex processes inside such a system is however challenging. In previous studies, simulations using computational fluid dynamics (CFD) produced reproducible results, but the simulations are tedious and involve assumptions. In this study, we propose machine-learning models that can be used in tandem with CFD, to accelerate high-fidelity fluid simulation, improve turbulence modeling, and enhance reduced-order models. A two-dimensional …


Data-Driven Decarbonization Of Residential Heating Systems: An Equity Perspective., John Wamburu, Emma Grazier, David Irwin, Christine Crago, Prashant Shenoy Jan 2022

Data-Driven Decarbonization Of Residential Heating Systems: An Equity Perspective., John Wamburu, Emma Grazier, David Irwin, Christine Crago, Prashant Shenoy

Publications

Since heating buildings using natural gas, propane and oil makes up a significant proportion of the aggregate carbon emissions every year, there is a strong interest in decarbonizing residential heating systems using new technologies such as electric heat pumps. In this poster, we conduct a data-driven optimization study to analyze the potential of replacing gas heating with electric heat pumps to reduce carbon emissions in a city-wide distribution grid. We seek to not only reduce the carbon footprint of residential heating, but also show how to do so equitably. Our results show that lower income homes have an energy usage …


Sustainable Computing - Without The Hot Air, Noman Bashir, David Irwin, Prashant Shenoy, Abel Souza Jan 2022

Sustainable Computing - Without The Hot Air, Noman Bashir, David Irwin, Prashant Shenoy, Abel Souza

Publications

The demand for computing is continuing to grow exponentially. This growth will translate to exponential growth in computing's energy consumption unless improvements in its energy-efficiency can outpace increases in its demand. Yet, after decades of research, further improving energy-efficiency is becoming increasingly challenging, as it is already highly optimized. As a result, at some point, increases in computing demand are likely to outpace increases in its energy-efficiency, potentially by a wide margin. Such exponential growth, if left unchecked, will position computing as a substantial contributor to global carbon emissions. While prominent technology companies have recognized the problem and sought to …


The Sustainability Of Decarbonizing The Grid: A Multi-Model Decision Analysis Applied To Mexico, Rodrigo Mercado Fernandez, Erin Baker Jan 2022

The Sustainability Of Decarbonizing The Grid: A Multi-Model Decision Analysis Applied To Mexico, Rodrigo Mercado Fernandez, Erin Baker

Publications

Mexico recognizes its vulnerability to the effects of climate change, including sea level rise, increasing average temperatures, more frequent extreme weather events and changes to the hydrological cycle. Because of these concerns Mexico has a vested interest in developing sustainable strategies for mitigating climate change as it develops its electricity grid. In this study, we use a set of sustainability criteria to evaluate a number of model-derived pathways for the electricity grid aimed at meeting Mexico's climate goals. We use a multi-step approach, combining pathways from multiple large scale global models with a detailed electricity model to leverage geographic information …


Broadband Dielectric Spectroscopic Detection Of Ethanol: A Side-By-Side Comparison Of Zno And Hkust-1 Mofs As Sensing Media, Papa K. Amoah, Zeinab Mohammed Hassan, Pengtao Lin, Engelbert Redel, Helmut Baumgart, Yaw S. Obeng Jan 2022

Broadband Dielectric Spectroscopic Detection Of Ethanol: A Side-By-Side Comparison Of Zno And Hkust-1 Mofs As Sensing Media, Papa K. Amoah, Zeinab Mohammed Hassan, Pengtao Lin, Engelbert Redel, Helmut Baumgart, Yaw S. Obeng

Electrical & Computer Engineering Faculty Publications

The most common gas sensors are based on chemically induced changes in electrical resistivity and necessarily involve making imperfect electrical contacts to the sensing materials, which introduce errors into the measurements. We leverage thermal- and chemical-induced changes in microwave propagation characteristics (i.e., S-parameters) to compare ZnO and surface-anchored metal-organic-framework (HKUST-1 MOF) thin films as sensing materials for detecting ethanol vapor, a typical volatile organic compound (VOC), at low temperatures. We show that the microwave propagation technique can detect ethanol at relatively low temperatures (<100 >°C), and afford new mechanistic insights that are inaccessible with the traditional dc-resistance-based measurements. In addition, …


Comparison Effect On Biogas Production From Vegetable And Fruit Waste With Rumen Digesta Through Co-Digestion Process, Anika Tasnim, Muhammad Rashed Al Mamun, Md Anwar Hossen, Md Towfiqur Rahman, Md Janibul Alam Soeb Jan 2022

Comparison Effect On Biogas Production From Vegetable And Fruit Waste With Rumen Digesta Through Co-Digestion Process, Anika Tasnim, Muhammad Rashed Al Mamun, Md Anwar Hossen, Md Towfiqur Rahman, Md Janibul Alam Soeb

Biological Systems Engineering: Papers and Publications

Biogas is the best renewable energy as it can be produced from any biomass for example any plant or living organism. The purpose of this research was to produce biomethane from co-digestion of vegetable and fruit waste with rumen digesta through anaerobic digestion process. In this research, two trials of experiment were conducted. Each trial has three different sample with different mixing ratios. Raw materials used in the experiment was rumen digesta of goat and cow, potato, capsicum, cucumbers, onions, radish, cauliflower, carrot, leafy vegetables, apple, banana, and papaya. In each sample, 1200 gram of raw materials were used. Hydraulic …


Sources Of Variability And Uncertainty In Food-Energy-Water Nexus Systems, Heydi Calderon-Ambelis, Deepak R. Keshwani Jan 2022

Sources Of Variability And Uncertainty In Food-Energy-Water Nexus Systems, Heydi Calderon-Ambelis, Deepak R. Keshwani

Biological Systems Engineering: Papers and Publications

A nexus approach contributes to the strategic allocation of resources to secure food, energy, and water for the world population. Integrated models considering the complex interactions across food, energy, and water (FEW) enhance decision-making and strategic planning towards resilience. However, a significant number of the existing integrated models leave unaddressed the inherent variability and uncertainty present in the FEW sectors. Here, we review the importance of characterizing variability over spatial and temporal scales and the importance of decreasing the uncertainty present within a FEW nexus systems. The review also discusses existing modeling tools that address variability and uncertainty on single …


Risk-Based Machine Learning Approaches For Probabilistic Transient Stability, Umair Shahzad Dec 2021

Risk-Based Machine Learning Approaches For Probabilistic Transient Stability, Umair Shahzad

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Power systems are getting more complex than ever and are consequently operating close to their limit of stability. Moreover, with the increasing demand of renewable wind generation, and the requirement to maintain a secure power system, the importance of transient stability cannot be overestimated. Considering its significance in power system security, it is important to propose a different approach for enhancing the transient stability, considering uncertainties. Current deterministic industry practices of transient stability assessment ignore the probabilistic nature of variables (fault type, fault location, fault clearing time, etc.). These approaches typically provide a conservative criterion and can result in expensive …


Survey Data On Energy And Fuel Use Of Firms In Economic Zones In The Philippines, Majah-Leah V. Ravago, Raul V. Fabella, Karl Robert L. Jandoc, Renzi G. Frias, J. Kathleen P. Magadia Nov 2021

Survey Data On Energy And Fuel Use Of Firms In Economic Zones In The Philippines, Majah-Leah V. Ravago, Raul V. Fabella, Karl Robert L. Jandoc, Renzi G. Frias, J. Kathleen P. Magadia

Economics Department Faculty Publications

The data describe characteristics, operations, utilities, and fuels used in the production of 115 manufacturing and agro-industrial firms in Philippine special economic zones. The data include information on the firm's production, sales, and schedules; electricity sources, requirements, and uses; the importance of various conventional fuels, and the firms’ fuel expenditure in their major production processes. The data also include their employee's aptitude, knowledge, considerations, and opinions on alternative fuels and primary energies, and experiences in using them. The data were gathered through a series of focus group discussions (FGDs) in June 2019 and an online survey conducted in August to …


Development-Induced Displacement In Kiryandongo District: A Case Study Of The Karuma Hydroelectric Power Plant, Remington Fritz Oct 2021

Development-Induced Displacement In Kiryandongo District: A Case Study Of The Karuma Hydroelectric Power Plant, Remington Fritz

Independent Study Project (ISP) Collection

This paper assesses the effects of the development induced displacement due to the Karuma Hydroelectric Power Plant on the Awoo village and surrounding areas in Karuma Town. Recently, Uganda has pursued several large-scale development projects that have repeatedly displaced people. Despite having strong displacement and resettlement framework, there is a continued pattern of failing to implement such framework, threatening the livelihood and well-being of those displaced.

Interview with key informants from several government agencies, such as the Ministry of Energy and Mineral Development the National Environmental Management Authority and Ugandan Generation Electricity Company Ltd have illustrated the political framework and …


Lecture 12: Recent Advances In Time Integration Methods And How They Can Enable Exascale Simulations, Carol S. Woodward Apr 2021

Lecture 12: Recent Advances In Time Integration Methods And How They Can Enable Exascale Simulations, Carol S. Woodward

Mathematical Sciences Spring Lecture Series

To prepare for exascale systems, scientific simulations are growing in physical realism and thus complexity. This increase often results in additional and changing time scales. Time integration methods are critical to efficient solution of these multiphysics systems. Yet, many large-scale applications have not fully embraced modern time integration methods nor efficient software implementations. Hence, achieving temporal accuracy with new and complex simulations has proved challenging. We will overview recent advances in time integration methods, including additive IMEX methods, multirate methods, and parallel-in-time approaches, expected to help realize the potential of exascale systems on multiphysics simulations. Efficient execution of these methods …


Renewable Energy Generation And Ghg Emission Reduction Potential Of A Satellitewater Reuse Plant By Using Solar Photovoltaics And Anaerobic Digestion, Jonathan R. Bailey, Saria Bukhary, Jacimaria R. Batista, Sajjad Ahmad Feb 2021

Renewable Energy Generation And Ghg Emission Reduction Potential Of A Satellitewater Reuse Plant By Using Solar Photovoltaics And Anaerobic Digestion, Jonathan R. Bailey, Saria Bukhary, Jacimaria R. Batista, Sajjad Ahmad

Civil and Environmental Engineering and Construction Faculty Research

Wastewater treatment is a very energy-intensive process. The growing population, increased demands for energy and water, and rising pollution levels caused by fossil-fuel-based energy generation, warrants the transition from fossil fuels to renewable energy. This research explored the energy consumption offset of a satellite water reuse plant (WRP) by using solar photovoltaics (PVs) and anaerobic digestion. The analysis was performed for two types of WRPs: conventional (conventional activated sludge system (CAS) bioreactor with secondary clarifiers and dual media filtration) and advanced (bioreactor with membrane filtration (MBR)) treatment satellite WRPs. The associated greenhouse gas (GHG) emissions were also evaluated. For conventional …


Human Factors, Ergonomics And Industry 4.0 In The Oil & Gas Industry: A Bibliometric Analysis, Francesco Longo, Antonio Padovano, Lucia Gazzaneo, Jessica Frangella, Rafael Diaz Jan 2021

Human Factors, Ergonomics And Industry 4.0 In The Oil & Gas Industry: A Bibliometric Analysis, Francesco Longo, Antonio Padovano, Lucia Gazzaneo, Jessica Frangella, Rafael Diaz

VMASC Publications

Over the last few years, the Human Factors and Ergonomics (HF/E) discipline has significantly benefited from new human-centric engineered digital solutions of the 4.0 industrial age. Technologies are creating new socio-technical interactions between human and machine that minimize the risk of design-induced human errors and have largely contributed to remarkable improvements in terms of process safety, productivity, quality, and workers’ well-being. However, despite the Oil&Gas (O&G) sector is one of the most hazardous environments where human error can have severe consequences, Industry 4.0 aspects are still scarcely integrated with HF/E. This paper calls for a holistic understanding of the changing …


Optimisation Of Retrofit Wall Insulation: An Irish Case Study, Rakshit D. Muddu, D M. Gowda, Anthony James Robinson, Aimee Byrne Jan 2021

Optimisation Of Retrofit Wall Insulation: An Irish Case Study, Rakshit D. Muddu, D M. Gowda, Anthony James Robinson, Aimee Byrne

Articles

Ireland has one of the highest rates of emissions per capita in the world and its residential sector is responsible for approximately 10% of total national CO2 emissions. Therefore, reducing the CO2 emissions in this sector will play a decisive role in achieving EU targets of reducing emissions by 40% by 2030. To better inform decisions regarding retrofit of the existing building stock, this study proposes Optimum Insulation Thicknesses (OIT) for typical walls in 25 regions in Ireland. The calculation of OIT includes annual heat energy expenditure, CO2 emissions, and material payback period. The approach taken is based on Heating …


Investigation Of Anaerobic Digestion Of The Aqueous Phase From Hydrothermal Carbonization Of Mixed Municipal Solid Waste, Kameron J. Adams, Ben Stuart, Sandeep Kumar Jan 2021

Investigation Of Anaerobic Digestion Of The Aqueous Phase From Hydrothermal Carbonization Of Mixed Municipal Solid Waste, Kameron J. Adams, Ben Stuart, Sandeep Kumar

Civil & Environmental Engineering Faculty Publications

In 2017, the United States Environmental Protection Agency (EPA) reported that Americans generated over 268 million tons of municipal solid waste (MSW). The majority (52%) of this waste ends up in landfills, which are the third largest source of anthropogenic methane emissions. Improvements in terms of waste management and energy production could be solved by integrating MSW processing with hydrothermal carbonization (HTC) and anaerobic digestion (AD) for converting organic carbon of MSW to fuels. The objectives of this study were to (a) investigate HTC experiments at varying temperatures and residence times (b) evaluate aqueous phase and solids properties, and (c) …


Potential Of Hemp (Cannabis Sativa L.) For Paired Phytoremediation And Bioenergy Production, Hanah T. Rheay, Emmanuel C. Omondi, Catherine E. Brewer Nov 2020

Potential Of Hemp (Cannabis Sativa L.) For Paired Phytoremediation And Bioenergy Production, Hanah T. Rheay, Emmanuel C. Omondi, Catherine E. Brewer

Agricultural and Environmental Sciences Faculty Research

Hemp (Cannabis sativa L.) is a multi-use crop that has been investigated for its potential use in phytoremediation of heavy metals, radionuclides, and organic contaminants, and as a feedstock for bioenergy production. A review of research literature indicates that hemp is a suitable crop for phytoremediation, and a competitive option for bioenergy. Coupling phytoremediation and bioenergy production from a single hemp crop is a potential solution to overcoming the economic constraints of phytoremediation projects. The current challenge is ensuring that the extracted contaminants are not introduced into the consumer marketplace. After several decades of limited research on hemp in the …


The Identification Of Heavy Metal Accumulator Ferns In Abandoned Mines In The Philippines With Applications To Mine Rehabilitation And Metal Recovery, Rene Juna R. Claveria, Teresita R. Perez, Ian A. Navarrete, Rubee Ellaine C. Perez, Brian Christian C. Lim Oct 2020

The Identification Of Heavy Metal Accumulator Ferns In Abandoned Mines In The Philippines With Applications To Mine Rehabilitation And Metal Recovery, Rene Juna R. Claveria, Teresita R. Perez, Ian A. Navarrete, Rubee Ellaine C. Perez, Brian Christian C. Lim

Environmental Science Faculty Publications

This paper focuses on the identification of some plant accumulators of heavy metals that can facilitate mine remediation and rehabilitation in the Philippines and metal recovery or phytomining. Most of these hyperaccumulators are ferns that thrive very well in different terrains and of particular interest are Pityrogramma calomelanos, Pteris vittata, and Pteris melanocaulon that are abundant in abandoned CueAu mining areas. The amounts of Cu and As in the soil and in the aboveground (AG) and belowground (BG) components of the accumulator ferns were determined and the Bioaccumulation Factor (BF) and the Translocation Factor (TF) were derived. Efforts to …


Potential Energy Generation From Agricultural Residue In Indonesia, Adrian Rizqi Irhamna Aug 2020

Potential Energy Generation From Agricultural Residue In Indonesia, Adrian Rizqi Irhamna

English Language Institute

Indonesia has great potential of biomass sources from their agricultural residue, which can potentially be used for alternative energy generation. This preliminary research explores the most suitable technology for energy generation from agricultural residue and its challenge for application in Indonesia. The study showed that biomass utilization via the direct combustion process is recommended for energy generation. It is also reported that the pretreatment process of drying and washing, are required to increase the fuel quality and plant efficiency.


Applying Renewable Energies Against Climate Change: Solar Photovoltaic (Pv) Energy, Juan Jose Estribi Aug 2020

Applying Renewable Energies Against Climate Change: Solar Photovoltaic (Pv) Energy, Juan Jose Estribi

English Language Institute

In recent years, more efforts towards fighting climate change have been done. As a direct response, research and technology have offered several insights regarding the specific causes, effects, and even possible solutions for resolving this global issue. Among these solutions, renewable energies and their potential contributions as clean energy sources can be assessed as feasible options for the energy transformation through the decarbonization process of the energy industry. This poster is mainly focused on solar photovoltaic (PV) energy and its great potential as a renewable energy by making a brief assessment of some important aspects such as resource availability, its …


Effects Of Temperature And Antioxidants On The Oxidation Of Biodiesel Derived From Waste Vegetable Oil, Randy L. Maglinao, Torrey J. Wagner, Keegan Duff Jun 2020

Effects Of Temperature And Antioxidants On The Oxidation Of Biodiesel Derived From Waste Vegetable Oil, Randy L. Maglinao, Torrey J. Wagner, Keegan Duff

Faculty Publications

Biodiesel offers several environmental benefits and improvements to some fuel performance properties, but its poor oxidative stability has been a major concern. Currently, the accepted practice to improve biodiesel oxidative stability is the addition of antioxidants; numerous antioxidants have been studied but their effectiveness in inhibiting biodiesel oxidation is difficult to predict due to variation with resonance stability, solubility, reactivity, and volatility. To improve prediction efforts, this study explored the Rapid Small-Scale Oxidation Test (RSSOT) as a means to investigate how biodiesel oxidation is affected by antioxidant concentration and temperature, and compared its results with the oxidative stability index test. …


Assessing The Potential For Greater Solar Development In West Texas, Usa, Dale D. Devitt, M. H. Young, J. P. Pierre May 2020

Assessing The Potential For Greater Solar Development In West Texas, Usa, Dale D. Devitt, M. H. Young, J. P. Pierre

Life Sciences Faculty Research

As population and economies continue to grow on a global scale, so too does the demand for energy. To improve reliability and independence of energy supplies, the U.S. and many other countries are seeking internally-sourced renewable energy; solar is one such renewable-energy source that meets these criteria. However, all energy sources exert some environmental impacts. In the case of solar, direct impacts stem mostly from alteration of land needed to host infrastructure. Understanding the environmental upside and downside potential of solar energy systems allows a more comprehensive, side-by-side comparison with different energy sources. In this article, we focus on the …


An Assessment Of Renewable Energy Technology Implementation In Storrs, Connecticut: Emissions Reduction And Feasibility Of A Microgrid System At Uconn, Sophie Macdonald May 2020

An Assessment Of Renewable Energy Technology Implementation In Storrs, Connecticut: Emissions Reduction And Feasibility Of A Microgrid System At Uconn, Sophie Macdonald

Honors Scholar Theses

The purpose of this project is to design a clean energy-sourced microgrid for UConn’s main campus that would reduce the university’s energy emissions while remaining within the geographic boundaries of viable UConn-owned land. Economic cost was not considered in this analysis; instead, emissions and space constraints were the optimized measures of value and feasibility. Sources of energy that were considered include photovoltaics (PV), wind turbines, hydrokinetic systems, and fuel cells. Energy storage capacity was included in the analysis as well. The overall system was optimized first by ignoring space constraints and for a minimum of 10% reduction from the current …


Internet Of Things In Water Management And Treatment, Abdul Salam Jan 2020

Internet Of Things In Water Management And Treatment, Abdul Salam

Faculty Publications

The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality …


Synthesis And Connection Of Iridium Hydrogen Evolution Catalyst To Chlorella Vulgaris Photosystem I For Light-Driven Hydrogen Evolution, Anna Ramirez Dec 2019

Synthesis And Connection Of Iridium Hydrogen Evolution Catalyst To Chlorella Vulgaris Photosystem I For Light-Driven Hydrogen Evolution, Anna Ramirez

Honors Program Theses and Projects

Hydrogen gas has been shown to be a promising energy source as options other than fossil fuels are being looked at in the face of anthropogenic climate change. It is known that anthropogenic climate change is caused by the production of greenhouse gases being let into the atmosphere, specifically a common reason for this is the burning of fossil fuels for energy. The overall goal of this project is to design a biochemical hybrid system that will be used to make H 2 gas and does not require the use of fossil fuels. Burning hydrogen as fuel produces only water …


Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt Jun 2019

Analyzing The Efficiency Of Horizontal Photovoltaic Cells In Various Climate Regions, Parker A. Hines, Torrey J. Wagner, Clay M. Koschnick, Steven J. Schuldt

Faculty Publications

This research presents the development of linear regression models to predict horizontal photovoltaic power output. We collected a dataset from 14 global Department of Defense (DoD) installations over a timeframe of one year using an experimental apparatus, resulting in 24,179 usable data points. We developed a linear model to predict power output, which incorporated site-specific weather and geographical characteristics, along with Köppen-Geiger climate classifications in order to determine the effect of adding climate to the model. After performing a Wald test between the full model and a reduced model without Köppen-Geiger climate variables, it was determined that including Köppen-Geiger climate …