Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

A Novel High-Throughput, High-Content Three-Dimensional Assay For Determination Of Tumor Invasion And Dormancy, Mahera M. Husain, Theodore J. Puls, Sherry Voytik-Harbin Aug 2017

A Novel High-Throughput, High-Content Three-Dimensional Assay For Determination Of Tumor Invasion And Dormancy, Mahera M. Husain, Theodore J. Puls, Sherry Voytik-Harbin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Metastasis accounts for most cancer deaths, while dormancy of tumor cells leads to unexpected cancer recurrence. These two aspects of cancer remain relatively untreatable in part because current two-dimensional (2D) methods of high-throughput drug screening cannot quantify outcomes related to these phenotypes. Three-dimensional (3D) in-vitro tumor models are a promising alternative because they better recreate the tumor microenvironment and relevant phenotypes. However, outcome measures for high-throughput screening of these systems are often limited to single measures such as metabolic activity using assays that are not standardized or optimized for 3D models. To address this gap, the objective of this work …


Localized Immunosuppression Therapy For Islet Cell Encapsulation, Madeline Mclaughlin, Clarissa Stephens, Sherry Voytik-Harbin Aug 2017

Localized Immunosuppression Therapy For Islet Cell Encapsulation, Madeline Mclaughlin, Clarissa Stephens, Sherry Voytik-Harbin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Type 1 diabetes, an autoimmune disease in which the body’s immune system destroys the insulin-producing beta cells necessary for managing a person’s blood glucose levels, affects 1.25 million Americans. A potential treatment for this disease is islet cell transplantation where Islets of Langerhans, containing the beta cells, are transplanted from a normal donor to a diabetic recipient to regulate blood glucose levels and provide insulin independence. Similar to whole organ transplantation, immune modulation through immunosuppression therapy is necessary for successful transplantation of islets without rejection. However, long-term systemic immunosuppression therapy can be toxic to the patient and the islets. Because …


Fret Biosensors: Engineering Fluorescent Proteins As Biological Tools For Studying Parkinson’S Disease, Nathan J. Leroy, Jacob R. Norley, Saranya Radhakrishnan, Mathew Tantama Aug 2017

Fret Biosensors: Engineering Fluorescent Proteins As Biological Tools For Studying Parkinson’S Disease, Nathan J. Leroy, Jacob R. Norley, Saranya Radhakrishnan, Mathew Tantama

The Summer Undergraduate Research Fellowship (SURF) Symposium

Parkinson’s Disease (PD) is a common neurodegenerative disease with over 200,000 new cases each year. In general, the cause of the disease is unknown, but oxidative stress inside of neurons has been associated with the disease’s pathology for some time. Currently, techniques to study the onset of PD inside of neurons are limited. This makes treatments and causes difficult to discover. One solution to this has been fluorescent protein biosensors. In short, these proteins can be engineered to glow when a certain state is achieved inside a cell. The present research discusses the engineering of a genetically-encoded fluorescent protein (FP) …


Multi-Color Ultra-High Resolution Imaging, David A. Miller, Michael Mlodzianoski, Sheng Liu, Fang Huang Aug 2017

Multi-Color Ultra-High Resolution Imaging, David A. Miller, Michael Mlodzianoski, Sheng Liu, Fang Huang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Fluorescence microscopy, which allows multiple-color imaging, plays an important role in observing structures inside cells with high specificity. The advent of super-resolution fluorescence microscopy, or nanoscopy techniques such as single-molecule switching nanoscopy (SMSN), has extended the application range of fluorescence microscopy beyond the diffraction limit, achieving up to 10-fold improvement in spatial resolution. At the same time, the recent development of expansion microscopy (ExM) allows samples to be physically expanded by 4-fold in the lateral dimensions providing another independent method to resolve structures beyond the diffraction limit. When combined, ExM-SMSN makes it possible to achieve another significant leap in resolution …


A Spatial Stochastic Model Of Ampar Trafficking And Subunit Dynamics, Tyler Vandyk, Matthew C. Pharris, Tamara L. Kinzer-Ursem Aug 2017

A Spatial Stochastic Model Of Ampar Trafficking And Subunit Dynamics, Tyler Vandyk, Matthew C. Pharris, Tamara L. Kinzer-Ursem

The Summer Undergraduate Research Fellowship (SURF) Symposium

In excitatory neurons, the ability of a synaptic connection to strengthen or weaken is known as synaptic plasticity and is thought to be the cellular basis for learning and memory. Understanding the mechanism of synaptic plasticity is an important step towards understanding and developing treatment methods for learning and memory disorders. A key molecular process in synaptic plasticity for mammalian glutamatergic neurons is the exocytosis (delivery to the synapse) of AMPA-type glutamate receptors (AMPARs). While the protein signaling pathways responsible for exocytosis have long been investigated with experimental methods, it remains unreasonable to study the system in its full complexity …


Three-Dimensional Microfluidic Tumor Vascular Model For Investigating Breast Cancer Metastasis, Anastasiia Vasiukhina, Brian H. Jun, Luis Solorio, Pavlos P. Vlachos Aug 2017

Three-Dimensional Microfluidic Tumor Vascular Model For Investigating Breast Cancer Metastasis, Anastasiia Vasiukhina, Brian H. Jun, Luis Solorio, Pavlos P. Vlachos

The Summer Undergraduate Research Fellowship (SURF) Symposium

Metastasis is one of the primary reasons for the high mortality rates in female patients diagnosed with breast cancer. It involves the migration of cancer cells into the circulatory system allowing for the dissemination of cancer cells in distal tissues. Understanding the major processes that occur in cells and tissues during metastasis can help improve currently existing therapeutic methods. In order to understand such mechanisms, developing physiologically relevant tissue models is crucial. Advancements in microfluidics have led to the fabrication of 3D culture models with shear stress gradients and flow control that can recapitulate aspects of the tumor microenvironment in …


Establishing A Lung Model For Evaluation Of Engineered Lung Microbiome Therapies, Kathryn F. Atherton, Stephen Miloro, Jenna Rickus Aug 2017

Establishing A Lung Model For Evaluation Of Engineered Lung Microbiome Therapies, Kathryn F. Atherton, Stephen Miloro, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Benzene, a toxin and carcinogen found in air polluted by cigarette smoke, car exhaust, and industrial processes, is associated with the development of leukemia and lymphoma. Other than avoiding exposure, there is no current method to deter the effects of benzene. One potential strategy to prevent these effects is to engineer the bacteria of the human lung microbiome to degrade benzene. To evaluate this novel approach, we must verify that the bacteria remain viable within the lung microenvironment. To do so, lungs were harvested from rats and swabbed to determine the contents of the original lung microbiome. Then green fluorescent …