Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Impact Of Sintering Time And Temperature On Mechanical Properties In Projection Sintering Of Polyamide-12, Justin Nussbaum, Taranjot Kaur, Julie Harmon, Nathan B. Crane Oct 2020

Impact Of Sintering Time And Temperature On Mechanical Properties In Projection Sintering Of Polyamide-12, Justin Nussbaum, Taranjot Kaur, Julie Harmon, Nathan B. Crane

Faculty Publications

In powder bed fusion additive manufacturing (AM), the fusing process is temperature and time dependent. However, little work has been done to understand how different processing temperatures and times might impact the mechanical properties at longer sintering times than are typical in laser sintering (LS) systems. Prior results with projection sintering have shown that heating for longer times (>1s) improves part toughness compared to laser sintering. In this work, Large Area Projection Sintering (LAPS) is used to sinter entire layers of material simultaneously over the course of a few seconds with spatial control of layer temperature. This work evaluates …


Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong Jul 2020

Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The ability to additively manufacture functional alumina ceramics has the potential to lower manufacturing costs and development time for complex components. In this study, the doping effects of zirconia on laser direct deposited alumina ceramics were investigated. The microstructure of the printed samples was analyzed in terms of grain size and composition distribution. The addition of zirconia was found to accumulate along alumina grain boundaries and resulted in significant grain refinement. The zirconia doping largely reduced crack formation during processing compared to that of pure alumina samples. In the case of 10 wt% zirconia, cracking during deposition was nearly completely …


Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal Jun 2020

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal

FIU Electronic Theses and Dissertations

Lightweight metals, such as Aluminum, Magnesium and Titanium, are receiving widespread attention for manufacturing agile structures. However, the mechanical strength of these metals and their alloys fall short of structural steels, curtailing their applicability in engineering applications where superior load-bearing ability is required. There is a need to effectively augment the deformation- and failure-resistance of these metals without compromising their density advantage.

This dissertation explores the mechanical reinforcement of the aforementioned lightweight metal matrices by utilizing Boron Nitride Nanotube (BNNT), a 1D nanomaterial with extraordinary mechanical properties. The nanotubes are found to resist thermo-oxidative transformations up to ~750°C, establishing their …


Hierarchical Mechanisms Of Lateral Interactions In High- Performance Fibers, Taylor A, Stockdale, Daniel P. Cole, Jeffrey M. Staniszewski, Michael R. Roenbeck, Dimitry Papkov, Steve R. Lustig, Youris A. Dzenis, Kenneth E. Strawhecker Jan 2020

Hierarchical Mechanisms Of Lateral Interactions In High- Performance Fibers, Taylor A, Stockdale, Daniel P. Cole, Jeffrey M. Staniszewski, Michael R. Roenbeck, Dimitry Papkov, Steve R. Lustig, Youris A. Dzenis, Kenneth E. Strawhecker

Department of Mechanical and Materials Engineering: Faculty Publications

The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10−50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate …