Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Properties And Performance Of The Basalt-Fiber Reinforced Texture Roof Tiles, Parinya Chakartnarodom, Wichit Prakaypan, Pitcharat Ineure, Nutthita Chuankrerkkul, Edward A. Laitila, Nuntaporn Kongkajun Dec 2020

Properties And Performance Of The Basalt-Fiber Reinforced Texture Roof Tiles, Parinya Chakartnarodom, Wichit Prakaypan, Pitcharat Ineure, Nutthita Chuankrerkkul, Edward A. Laitila, Nuntaporn Kongkajun

Michigan Tech Publications

The mechanical and the physical properties, and the performance of texture roof tiles reinforced with the basalt fibers were observed. The samples of the basalt-fiber reinforced texture roof tiles were produced on the industrial scale by using filter pressing method. After forming, the as-molded samples were air cured and characterized based on ASTM C1185 standard for their mechanical properties and physical properties. In addition, the roof-tile installation test was also performed. The results showed that the samples of the basalt-fiber reinforced texture roof tile (BFRT) could be produced on the industrial scale by using the common setting of the forming …


Aerosol Jet Printed Capacitive Strain Gauge For Soft Structural Materials, Kiyo T. Fujimoto, Jennifer K. Watkins, Timothy Phero, Takoda Bingham, Kshama Lakshmi Ranganatha, Benjamin C. Johnson, Zhangxian Deng, Brian Jaques, David Estrada Nov 2020

Aerosol Jet Printed Capacitive Strain Gauge For Soft Structural Materials, Kiyo T. Fujimoto, Jennifer K. Watkins, Timothy Phero, Takoda Bingham, Kshama Lakshmi Ranganatha, Benjamin C. Johnson, Zhangxian Deng, Brian Jaques, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Soft structural textiles, or softgoods, are used within the space industry for inflatable habitats, parachutes and decelerator systems. Evaluating the safety and structural integrity of these systems occurs through structural health monitoring systems (SHM), which integrate non-invasive/non-destructive testing methods to detect, diagnose, and locate damage. Strain/load monitoring of these systems is limited while utilizing traditional strain gauges as these gauges are typically stiff, operate at low temperatures, and fail when subjected to high strain that is a result of high loading classifying them as unsuitable for SHM of soft structural textiles. For this work, a capacitance based strain gauge (CSG) …


Design And Performance Of Polyurethane Elastomers Composed With Different Soft Segments, Xin Jin, Naisheng Guo, Zhanping You, Yiqiu Tan Nov 2020

Design And Performance Of Polyurethane Elastomers Composed With Different Soft Segments, Xin Jin, Naisheng Guo, Zhanping You, Yiqiu Tan

Michigan Tech Publications

Thermoplastic polyurethane elastomers (TPUs) are widely used in a variety of applications as a result of flexible and superior performance. However, few scholars pay close attention on the design and synthesis of TPUs through the self‐determined laboratory process, especially on definite of chemical structures and upon the influence on properties. To investigate the properties of synthesized modifier based on chemical structure, firstly each kind of unknown structure and composition ratio of TPUs was determined by using a new method. Furthermore, the thermal characteristics and mechanical properties of modifiers were exposed by thermal characteristics and mechanics performance tests. The experimental results …


Impact Of Sintering Time And Temperature On Mechanical Properties In Projection Sintering Of Polyamide-12, Justin Nussbaum, Taranjot Kaur, Julie Harmon, Nathan B. Crane Oct 2020

Impact Of Sintering Time And Temperature On Mechanical Properties In Projection Sintering Of Polyamide-12, Justin Nussbaum, Taranjot Kaur, Julie Harmon, Nathan B. Crane

Faculty Publications

In powder bed fusion additive manufacturing (AM), the fusing process is temperature and time dependent. However, little work has been done to understand how different processing temperatures and times might impact the mechanical properties at longer sintering times than are typical in laser sintering (LS) systems. Prior results with projection sintering have shown that heating for longer times (>1s) improves part toughness compared to laser sintering. In this work, Large Area Projection Sintering (LAPS) is used to sinter entire layers of material simultaneously over the course of a few seconds with spatial control of layer temperature. This work evaluates …


Determination Of Steels In Kentucky Bridges, Theodore Hopwood Ii, Christopher Goff, Sudhir Palle Oct 2020

Determination Of Steels In Kentucky Bridges, Theodore Hopwood Ii, Christopher Goff, Sudhir Palle

Kentucky Transportation Center Research Report

The Kentucky Transportation Cabinet (KYTC) maintains over two hundred steel bridges constructed with types of steel which are unknown. Kentucky Transportation Center (KTC) researchers have developed a procedure for determining steel tensile properties (0.2% yield strength and ultimate tensile strength) which can be used to help identify unknown steels. The procedure involves extracting small coupons from the lower flanges of steel deck girder bridges. Coupons are then machined into sub-sized tensile testing specimens and suitable shapes for chemical analyses. Sub-sized tensile tests returned values generally comparable to those provided in mill certifications of steels purchased for laboratory trials. Several analytical …


Deformation And Toughness Behavior Of Β -Type Titanium Alloys Comprising C15-Type Laves Phase, C. D. Rabadia, Y. J. Liu, S. F. Jawed, L. Q. Wang, H. Sun, L. C. Zhang Sep 2020

Deformation And Toughness Behavior Of Β -Type Titanium Alloys Comprising C15-Type Laves Phase, C. D. Rabadia, Y. J. Liu, S. F. Jawed, L. Q. Wang, H. Sun, L. C. Zhang

Research outputs 2014 to 2021

Laves phases are effective in tailoring the mechanical properties of alloys used for structural engineering applications. Therefore, it is an emerging research significance to investigate the deformation features of alloys comprising a Laves phase. In this work, the Ti–33Zr–xFe–yCr (x = 5, 7 wt% and y = 2, 4 wt%) alloys were designed in such a way that a Laves phase would form in the investigated Ti–33Zr–xFe–yCr alloys and later, cast by cold crucible levitation melting. All the as-cast alloys exhibit a face-centered cubic C15-type Laves phase along with a dominant β phase. The volume fraction of C15 Laves phase …


Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong Jul 2020

Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The ability to additively manufacture functional alumina ceramics has the potential to lower manufacturing costs and development time for complex components. In this study, the doping effects of zirconia on laser direct deposited alumina ceramics were investigated. The microstructure of the printed samples was analyzed in terms of grain size and composition distribution. The addition of zirconia was found to accumulate along alumina grain boundaries and resulted in significant grain refinement. The zirconia doping largely reduced crack formation during processing compared to that of pure alumina samples. In the case of 10 wt% zirconia, cracking during deposition was nearly completely …


Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal Jun 2020

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal

FIU Electronic Theses and Dissertations

Lightweight metals, such as Aluminum, Magnesium and Titanium, are receiving widespread attention for manufacturing agile structures. However, the mechanical strength of these metals and their alloys fall short of structural steels, curtailing their applicability in engineering applications where superior load-bearing ability is required. There is a need to effectively augment the deformation- and failure-resistance of these metals without compromising their density advantage.

This dissertation explores the mechanical reinforcement of the aforementioned lightweight metal matrices by utilizing Boron Nitride Nanotube (BNNT), a 1D nanomaterial with extraordinary mechanical properties. The nanotubes are found to resist thermo-oxidative transformations up to ~750°C, establishing their …


Editorial: Structure And Mechanical Properties Of Titanium Alloys And Titanium Matrix Composites (Tmcs), Lechun Xie, Liqiang Wang, Lai-Chang Zhang, Weijie Lu Apr 2020

Editorial: Structure And Mechanical Properties Of Titanium Alloys And Titanium Matrix Composites (Tmcs), Lechun Xie, Liqiang Wang, Lai-Chang Zhang, Weijie Lu

Research outputs 2014 to 2021

No abstract provided.


Influence Of Cr Content On The Microstructure And Mechanical Properties Of Crxfenicu High Entropy Alloys, Hao Wu, Sirui Huang, Chengyan Zhu, Heguo Zhu, Zonghan Xie Apr 2020

Influence Of Cr Content On The Microstructure And Mechanical Properties Of Crxfenicu High Entropy Alloys, Hao Wu, Sirui Huang, Chengyan Zhu, Heguo Zhu, Zonghan Xie

Research outputs 2014 to 2021

© 2020 Chinese Materials Research Society The effect of Cr content on the microstructure and mechanical properties of CrxFeNiCu high entropy alloys (HEAs) was firstly studied by first-principles calculations. The calculated results show that the hardness of the alloys increased with the expense of its plasticity decrease, if the content of Cr in the alloy increased. In order to verify the calculated results, CrxFeNiCu (x = 0.8, 1, 1.5 and 2) high entropy alloys were synthesized by vacuum induction melting in the present study. The results show that as the value of x increased from 0.8 to 2, the crystal …


Hierarchical Mechanisms Of Lateral Interactions In High- Performance Fibers, Taylor A, Stockdale, Daniel P. Cole, Jeffrey M. Staniszewski, Michael R. Roenbeck, Dimitry Papkov, Steve R. Lustig, Youris A. Dzenis, Kenneth E. Strawhecker Jan 2020

Hierarchical Mechanisms Of Lateral Interactions In High- Performance Fibers, Taylor A, Stockdale, Daniel P. Cole, Jeffrey M. Staniszewski, Michael R. Roenbeck, Dimitry Papkov, Steve R. Lustig, Youris A. Dzenis, Kenneth E. Strawhecker

Department of Mechanical and Materials Engineering: Faculty Publications

The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10−50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate …