Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Mechanical & Aerospace Engineering Faculty Publications

Electrode

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng Jan 2023

Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng

Mechanical & Aerospace Engineering Faculty Publications

Electroosmosis is one of the most used actuation mechanisms for the microfluidics in the current active lab-on-chip devices. It is generated on the induced charged microchannel walls in contact with an electrolyte solution. Electrode distribution plays the key role on providing the external electric field for electroosmosis, and determines the performance of electroosmotic microfluidics. Therefore, this paper proposes a topology optimization approach for the electrodes of electroosmotic microfluidics, where the electrode layout on the microchannel wall can be determined to achieve designer desired microfluidic performance. This topology optimization is carried out by implementing the interpolation of electric insulation and electric …


Synthesis And Characterization Of Birnessite And Cryptomelane Nanostructures In Presence Of Hoffmeister Anions, Marcos A. Cheney, Robin Jose, Arghya Banerjee, Pradip K. Bhowmik, Shizhi Qian, Joseph M. Okoh Jan 2009

Synthesis And Characterization Of Birnessite And Cryptomelane Nanostructures In Presence Of Hoffmeister Anions, Marcos A. Cheney, Robin Jose, Arghya Banerjee, Pradip K. Bhowmik, Shizhi Qian, Joseph M. Okoh

Mechanical & Aerospace Engineering Faculty Publications

The effect of Hoffmeister anions Cl(-), SO(4) (2-), and ClO(4) (-) on the structure and morphology of birnessite and cryptomelane-type manganese dioxide nanostructures, produced by the reduction reaction of KMnO(4) and MnSO(4) in aqueous acidic media, was studied. The syntheses were based on the decomposition of aqueous KMnO(4) in presence of HCl for birnessite-type and acidified MnSO4 for cryptomelane-type manganese dioxide under soft hydrothermal conditions. They were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) techniques. XRD patterns show the formation of birnessite for the first synthesis and a mixture of cryptomelane and …