Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 80 of 80

Full-Text Articles in Engineering

Scaleable Nanomanufacturing Of Metasurfaces Using Microsphere Photolithography, Chuang Qu Jan 2019

Scaleable Nanomanufacturing Of Metasurfaces Using Microsphere Photolithography, Chuang Qu

Doctoral Dissertations

“The cost-effective manufacturing of metasurfaces over large areas is a critical issue that limits their implementations. Microsphere photolithography (MPL) uses a scalable self-assembled microsphere array as an optical element to focus collimated light to nanoscale photonic jets in a photoresist layer. This dissertation investigates the fabrication capabilities, process control, and potential applications of MPL. First, the MPL concept is applied to the fabrication of metasurfaces with engineered IR absorption (e.g. perfect absorption with multiband/broadband and wavelength/polarization dependences). Improving the patterning of the photoresist requires a fundamental understanding the photochemical photonic jet interactions. The dissertation presents a model of the MPL …


Near-Field Electrospinning Of A Polymer/Bioactive Glass Composite To Fabricate 3d Biomimetic Structures, Krishna C. R. Kolan, Jie Li, Sonya Roberts, Julie A. Semon, Jonghyun Park, D. E. Day, Ming-Chuan Leu Jan 2019

Near-Field Electrospinning Of A Polymer/Bioactive Glass Composite To Fabricate 3d Biomimetic Structures, Krishna C. R. Kolan, Jie Li, Sonya Roberts, Julie A. Semon, Jonghyun Park, D. E. Day, Ming-Chuan Leu

Biological Sciences Faculty Research & Creative Works

Bioactive glasses have recently gained attention in tissue engineering and three-dimensional (3D) bioprinting because of their ability to enhance angiogenesis. Some challenges for developing biological tissues with bioactive glasses include incorporation of glass particles and achieving a 3D architecture mimicking natural tissues. In this study, we investigate the fabrication of scaffolds with a polymer/bioactive glass composite using near-field electrospinning (NFES). An overall controlled 3D scaffold with pores, containing random fibers, is created and aimed to provide superior cell proliferation. Highly angiogenic borate bioactive glass (13-93B3) in 20 wt.% is added to polycaprolactone (PCL) to fabricate scaffolds using the NFES technique. …


Performance Evaluation Of Bmi Resin System For Thin-Ply Composites, Manoj Kumar Reddy Rangapuram Jan 2019

Performance Evaluation Of Bmi Resin System For Thin-Ply Composites, Manoj Kumar Reddy Rangapuram

Masters Theses

"Composites materials are increasingly being used in aerospace applications over the past few years. The unique properties like high strength to weight ratio, thermal stability, fatigue and corrosion resistance set them apart from the conventional materials. Composite materials are well suited for the applications where weight is the primary concern in the design. Composites structures are vulnerable to mechanical as well as thermal loadings. Transverse micro-cracking and delamination are the most common type of failures in composite materials. The thickness of the ply being used play a key role dictating the properties of the resultant composite structure. As the ply …


Controlled Switching In Kalman Filtering And Iterative Learning Controls, He Li Jan 2019

Controlled Switching In Kalman Filtering And Iterative Learning Controls, He Li

Masters Theses

“Switching is not an uncommon phenomenon in practical systems and processes, for examples, power switches opening and closing, transmissions lifting from low gear to high gear, and air planes crossing different layers in air. Switching can be a disaster to a system since frequent switching between two asymptotically stable subsystems may result in unstable dynamics. On the contrary, switching can be a benefit to a system since controlled switching is sometimes imposed by the designers to achieve desired performance. This encourages the study of system dynamics and performance when undesired switching occurs or controlled switching is imposed. In this research, …


Light Touch Based Virtual Cane For Balance Assistance During Standing, Sindhu Reddy Alluri Jan 2019

Light Touch Based Virtual Cane For Balance Assistance During Standing, Sindhu Reddy Alluri

Masters Theses

"Can additional information about one's body kinematics provided through hands improve human balance? Light-Touch (LT) through hands helps improve balance in a wide range of populations, both healthy and impaired. The force is too small to provide any meaningful mechanical assistance -- rather, it is suggested that the additional sensory information through hands helps the body improve balance.

To investigate the potential for improving human balance through biofeedback through hands, we developed a Virtual Cane (VC) for balance assistance during standing. The VC mimics the physical cane's function of providing information about one's body in space. Balance experiments on 10 …


Characterization Of The Surface Condition In Aa6061 Resulting From Deep Rolling As A Function Of Common Industrial Parameters, Andrew Kenneth Layer Jan 2019

Characterization Of The Surface Condition In Aa6061 Resulting From Deep Rolling As A Function Of Common Industrial Parameters, Andrew Kenneth Layer

Masters Theses

"Roller burnishing is widely used in industry to improve the surface finish and fatigue life of components. As weight reduction continues to grow in the automotive and transportation industries, deep rolling can help maintain product performance by mitigating the increase in component stresses resulting from lower weight systems. Deep rolling parameters such as tool, applied angle, feed rate, spindle speeds, and relative tool direction all affect cycle time, product performance, and appearance. The effects of common industrial parameters on the resultant surface roughness and residual stress profiles were studied in this investigation. The samples were manufactured on a CNC lathe …


Aerosol-Jet Printing And Flash Sintering Of Conformal Conductors On Non-Planar Surfaces, I-Meng Chen Jan 2019

Aerosol-Jet Printing And Flash Sintering Of Conformal Conductors On Non-Planar Surfaces, I-Meng Chen

Masters Theses

”The printed electronics have been broadly applied in our daily lives, many new manufacturing methodologies are studied and investigated. The research here presented the full manufacturing process of printed conductors of aerosol printing and flash sintering techniques on substrates such as planar and non-planar surfaces.

The aerosol printing (AJP) was introduced because of its simplicity in experimental setup and flexibility of printing. It produces less ink waste and consumes less manufacturing cost. Furthermore, it has the direct-write ability to print in any customized patterns or shapes on non-planar surfaces. In this study, the Cu NPs was selected as the functioning …


Design, Fabrication, And Characterization Of Functionally Graded Materials, Sreekar Karnati Jan 2019

Design, Fabrication, And Characterization Of Functionally Graded Materials, Sreekar Karnati

Doctoral Dissertations

“The aim of this research was to investigate the feasibility of fabricating custom designed, graded materials using Laser Metal Deposition (LMD) that will cater for functionality and unconventional repair. The ultimate goal of the project is to establish the versatility of LMD for fabricating advanced materials and tackling problems that have been conventionally difficult or in cases infeasible. In order to accomplish these goals, this research involved investigations into, the feasibility of using elemental powders as modular feedstocks, the feasibility of fabricating tailored gradients with these custom compositions, and finally leveraging the advantages of grading materials using LMD to successfully …


Active-Passive Dynamic Consensus Filters: Theory And Applications, John Daniel Peterson Jan 2019

Active-Passive Dynamic Consensus Filters: Theory And Applications, John Daniel Peterson

Doctoral Dissertations

”This dissertation presents a new method for distributively sensing dynamic environments utilizing integral action based system theoretic distributed information fusion methods. Specifically, the main contribution is a new class of dynamic consensus filters, termed active-passive dynamic consensus filters, in which agents are considered to be active, if they are able to sense an exogenous quantity of interest and are considered to be passive, otherwise, where the objective is to drive the states of all agents to the convex hull spanned by the exogenous inputs sensed by active agents. Additionally, we generalize these results to allow agents to locally …


Characterization Of Aerosols In An Underground Mine, Arash A. Habibi Jan 2019

Characterization Of Aerosols In An Underground Mine, Arash A. Habibi

Doctoral Dissertations

“Diesel-powered engines are a common source of submicron carbon-rich particles. Characterizing morphological and physical attributes of diesel agglomerates is therefore of great importance to be able to identify the source and improve removal technology. Size-segregated sampling was conducted in two phases of underground experiments. Scanning transmission electron microscopy and fast mobility particle sizers were used to determine the size distribution of agglomerates based on particle mobility and projected area diameter. Controlled zone sampling test results were used to determine the morphological characteristics of agglomerates for specific types of diesel equipment both with and without removal strategies. Changes in fractal dimension, …


Deep Understanding Of Degradation In Lithium Ion Batteries Through Experimental And First-Principles Study, Yufang He Jan 2019

Deep Understanding Of Degradation In Lithium Ion Batteries Through Experimental And First-Principles Study, Yufang He

Doctoral Dissertations

"The growing interests in Lithium-ion Batteries (LIBs) have significantly accelerated the development of active materials. However, the key challenge is that electrode materials suffer from degradation, which include transition metal dissolution, solid electrolyte interphase (SEI) layer formation, and mechanical fracture. To address these issues, applying an ultrathin coating onto active materials via Atomic Layer Deposition (ALD) is an efficient way. Although numerious works have been done for active material performance improvement via ALD technology, the fundamental enhancement mechanisms of ALD coating on battery performance improvement are not yet known. Therefore, this dissertation consists of four papers, which focused on the …


Remanufacturing Of Precision Metal Components Using Additive Manufacturing Technology, Xinchang Zhang Jan 2019

Remanufacturing Of Precision Metal Components Using Additive Manufacturing Technology, Xinchang Zhang

Doctoral Dissertations

"Critical metallic components such as jet engine turbine blades and casting die/mold may be damaged after servicing for a period at harsh working environments such as elevated temperature and pressure, impact with foreign objects, wear, corrosion, and fatigue. Additive manufacturing has a promising application for the refurbishment of such high-costly parts by depositing materials at the damaged zone to restore the nominal geometry. However, several issues such as pre-processing of worn parts to assure the repairability, reconstructing the repair volume to generate a repair tool path for material deposition, and inspection of repaired parts are challenging. The current research aims …


Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu Jan 2019

Time-Dependent Reliability Methodologies With Saddlepoint Approximation, Zhangli Hu

Doctoral Dissertations

"Engineers always encounter time-dependent uncertainties that ubiquitously exist, such as the random deterioration of material properties and time-variant loads. Therefore the reliability of engineering systems becomes time-dependent. It is crucial to predict the time-dependent reliability in the design stage, given possible catastrophic consequences of a failure. Although extensive research has been conducted on reliability analysis, estimating the reliability accurately and efficiently is still challenging. The objective of this work is to develop accurate and efficient reliability methodologies for engineering design. The basic idea is the integration of traditional reliability methods with saddlepoint approximation (SPA), which can accurately approximate the tail …


Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li Jan 2019

Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li

Doctoral Dissertations

"Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young's modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device"--Abstract, page iv.


Solvent-Free Additive Manufacturing Of Electrodes For Li-Ion Batteries, Brandon Joshua Ludwig Jan 2019

Solvent-Free Additive Manufacturing Of Electrodes For Li-Ion Batteries, Brandon Joshua Ludwig

Doctoral Dissertations

"A new Li-ion battery electrode manufacturing process using a solvent free additive manufacturing method has been developed. Li-ion battery electrodes consist of active material particles, a binder additive, and a conductive additive. Traditionally, Li-ion battery electrodes are manufacturing using the "slurry casting" technique. In this method, the electrode materials are mixed with a solvent to create a slurry. Electrodes fabricated in this method are readily implemented for small platforms, such as portable electronics. However, this method isn't as economically viable in large platforms due to high material and manufacturing costs. High material and manufacturing costs are mostly attributed to the …


Laser Welding Of Metallic Glass To Crystalline Metal In Laser-Foil-Printing Additive Manufacturing, Yingqi Li Jan 2019

Laser Welding Of Metallic Glass To Crystalline Metal In Laser-Foil-Printing Additive Manufacturing, Yingqi Li

Doctoral Dissertations

"The application of metallic glasses has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. In addition, joining metallic glass to crystalline metal is of interest for many applications that require locally tailored functions and properties, but it is challenging. This research describes a promising additive manufacturing technology, i.e., laser-foil-printing, to make high-quality metallic glass parts with large dimensions and complex geometries and to fabricate multi-material components from metallic glass and crystalline metal. In this research, Zr52.5Ti5Al10Ni14.6Cu …


Fabrication Of Alcocrfeni High-Entropy Alloy Coating On An Aisi 304 Substrate Via A Cofe₂Ni Intermediate Layer, Wenyuan Cui, Sreekar Karnati, Xinchang Zhang, Elizabeth Burns, Frank W. Liou Jan 2019

Fabrication Of Alcocrfeni High-Entropy Alloy Coating On An Aisi 304 Substrate Via A Cofe₂Ni Intermediate Layer, Wenyuan Cui, Sreekar Karnati, Xinchang Zhang, Elizabeth Burns, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Through laser metal deposition, attempts were made to coat AlCoCrFeNi, a high-entropy alloy (HEA), on an AISI 304 stainless steel substrate to integrate their properties. However, the direct coating of the AlCoCrFeNi HEA on the AISI 304 substrate was found to be unviable due to cracks at the interface between these two materials. The difference in compositional change was suspected to be the source of the cracks. Therefore, a new transition route was performed by coating an intermediate layer of CoFe2Ni on the AISI 304 substrate. Investigations into the microstructure, phase composition, elemental composition and Vickers hardness were …


Enhanced Quantum Dots Spontaneous Emission With Metamaterial Perfect Absorbers, Wei Wang, Xiaodong Yang, Ting S. Luk, Jie Gao Jan 2019

Enhanced Quantum Dots Spontaneous Emission With Metamaterial Perfect Absorbers, Wei Wang, Xiaodong Yang, Ting S. Luk, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metamaterial perfect absorbers (PAs) made of a hexagonal array of holes on Ag-SiO 2 -Ag thin films have been realized and utilized to enhance the spontaneous emission rate and photoluminescence intensity of CdSe/ZnS quantum dots (QDs) spin-coated on the absorber top surface. Perfect absorption of incoming light occurs at the wavelength where the impedance is matched to that of the free space. When QDs strongly excite both the electric and magnetic resonances at this perfect absorption wavelength, a significant Purcell effect on the spontaneous emission process and enhanced radiative outcoupling of photoluminescence intensity are expected. For perfect absorbers with near-unity …


Improvements In Digital Image Correlation And Application In Material Mechanical Test, Yunlu Zhang Jan 2019

Improvements In Digital Image Correlation And Application In Material Mechanical Test, Yunlu Zhang

Doctoral Dissertations

"Digital image correlation (DIC) is a non-contact full-field optical measurement method. With the advantages of high accuracy, low cost, and simple implementation, it has been widely applied in the area of experimental mechanics. In this study, DIC algorithm has been improved in the aspects of the pixel-level searching method and reference frame update strategy. The feature matching based method is proposed to provide an initial guess for all points of interest with semi-subpixel level accuracy in cases with small or large translation, deformation, or rotation. The bisection searching strategy is presented to automatically adjust the frame step for varying practical …


Computational Fluid Dynamics Modeling And Comparison Of Advanced Techniques For Heat Transfer Augmentation For Nuclear Applications, Salman Mohammed Alzahrani Jan 2019

Computational Fluid Dynamics Modeling And Comparison Of Advanced Techniques For Heat Transfer Augmentation For Nuclear Applications, Salman Mohammed Alzahrani

Doctoral Dissertations

“Passive safety is the most important feature of NuScale’s reactor designs. Twist tape is one passive heat enhance heat technique. The present research investigated thermo-hydraulic characteristics of natural and forced convection of water under different configurations of twisted tape inserted in tube as well as NuScale rod bundles for uniform wall heat flux using computational fluid dynamics (CFD) using ANSYS Fluent 18.1. Results for twist tape inserted in tube under natural circulation showed that heat transfer enhanced and pressure drop increased to 28% and 102.8% over the plain tube respectively. Regularly spaced tapes, and different widths of the twisted tapes …