Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

PDF

Mechanical Engineering

Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 333

Full-Text Articles in Engineering

The Effect Of Surface Gas/Liquid Entrapment On Drag Reduction, Haosen Tan May 2022

The Effect Of Surface Gas/Liquid Entrapment On Drag Reduction, Haosen Tan

Mechanical Engineering Research Theses and Dissertations

Economic globalization has made today’s world more closely linked, where transportation (e.g. shipping, pipeline) has played an important role. Approximately over 60% (in air), 80% (underwater), and 100% (in pipeline) propulsive power is used to overcome surface drag, so reducing surface drag will have a substantial impact economically and environmentally.

To develop a surface that has lower drag, the intuitive idea is to convert no-slip boundary conditions to slip or partial slip ones. To achieve that, the most promising approach is to replace the solid-liquid boundaries completely or partially with gas-liquid or liquid-liquid boundaries, because the shear stress is much …


Resistive Pulse Sensing Of Protein Unfolding And Transport In Solid-State Nanopores, Jugal Saharia May 2022

Resistive Pulse Sensing Of Protein Unfolding And Transport In Solid-State Nanopores, Jugal Saharia

Mechanical Engineering Research Theses and Dissertations

Solid-state nanopore sensors have attracted considerable attraction as a tool for solution-based single-molecule studies and have been successfully utilized for characterization of biomolecules such as nucleic acids, proteins, glycans, viruses, etc. Among these, characterization of proteins has been more challenging due to their charge heterogeneity and the complex energy landscape associated with different protein conformations. Presented in this thesis is the fabrication of solid-state nanopores and their application for characterizing proteins and understanding their transport through nanopores. Fabrication of nanometer-sized pores in SixNy membranes was achieved using the conventional controlled dielectric breakdown method as well as a …


Design And Nonlinear Control Of A Haptic Glove For Virtual Palpation, Matthew Galla May 2022

Design And Nonlinear Control Of A Haptic Glove For Virtual Palpation, Matthew Galla

Mechanical Engineering Research Theses and Dissertations

This dissertation presents the design, kinematic analysis, and nonlinear control of a Haptic Glove for medical elastographic imaging virtual palpation. Of the 13 degrees of freedom present in the index finger, middle finger, and thumb of the hand, the design fixes 4, constrains 2 and controls 6 with pneumatic air cylinder actuators, allowing uncontrolled, but measured motion in the remaining 1 degree of freedom. Nearly linear bijective transfer functions between the actuator positions and joint angles are found in closed form for all 6 actuated joints. A nonlinear, sliding-mode controller that allows each actuator to be controlled by a single …


Ballasting System For An Autonomous Underwater Vehicle, Noura Rayes, Bahram Nassersharif, Zach Champney, Kyle Alessandro, Jason Mirandou May 2022

Ballasting System For An Autonomous Underwater Vehicle, Noura Rayes, Bahram Nassersharif, Zach Champney, Kyle Alessandro, Jason Mirandou

Senior Honors Projects

NOURA RAYES (Mechanical Engineering); Ballasting System for an Autonomous Underwater Vehicle Sponsor: Bahram Nassersharif (Mechanical Engineering)

Over the last year, our Mechanical Engineering Capstone team, Nautilus, has been working to design a ballasting system for various Autonomous Underwater Vehicles (AUVs) sponsored by Raytheon Technologies. Common AUV systems are used for a wide range of applications from environmental monitoring, oceanic exploration, to data collection. AUVs also have many technical advantages that make underwater tasks more efficient, cost-effective, and generally safer. Raytheon Technology, specifically, is looking to improve their existing ballasting mechanism for their AUVs to use for military defense. For this …


Mechanistic Undrestanding Of Amorphization In Iron-Based Soft Magnetic Materials, Taban Larimian May 2022

Mechanistic Undrestanding Of Amorphization In Iron-Based Soft Magnetic Materials, Taban Larimian

ETD Archive

Iron-based magnetic alloys possess very good magnetic and mechanical properties. Among these alloys Fe-Si-B-based alloys show outstanding saturation magnetization and coercivity which makes them great candidates for many industrial applications. Addition of certain elements to the Fe-Si-B base is proven to improve the homogeneity and fineness of microstructure as well as enhance the magnetic behavior of these alloys. In this research work, we have studied the effect of adding copper and niobium to the Fe-Si-B base alloy. Previous studies have shown that magnetic alloys show better magnetic properties when their microstructure consists of nanocrystals embedded in an amorphous matrix. In …


Viability And Accessibility Of Urban Heat Island And Lake Microclimate Data Over Current Tmy Weather Data For Accurate Energy Demand Predictions., Irena A. Weclawiak Apr 2022

Viability And Accessibility Of Urban Heat Island And Lake Microclimate Data Over Current Tmy Weather Data For Accurate Energy Demand Predictions., Irena A. Weclawiak

ETD Archive

Building Energy Simulations (BES) are necessary for designing energy-efficient systems. Open-source simulation software developed by the Department of Energy (DOE), EnergyPlus (EP) provides Typical Meteorological Year (TMY) weather data that consists of a 15-year average. Two major concerns about this data are the inability to detect extreme conditions and limited data locations. There is a greater number of Microclimate (MC) stations that can be used for simulations, but it involves time-consuming data preparation to match the EP format. This study investigated the effects of Urban Heat Island (UHI) and the MC of Lake Erie. A comparison of the MC data …


An Evaluation And Economic Analysis Of A Water Main Geothermal System In A Residential Space, Brian L. Kohut Apr 2022

An Evaluation And Economic Analysis Of A Water Main Geothermal System In A Residential Space, Brian L. Kohut

ETD Archive

Iron-based magnetic alloys possess very good magnetic and mechanical properties. Among these alloys Fe-Si-B-based alloys show outstanding saturation magnetization and coercivity which makes them great candidates for many industrial applications. Addition of certain elements to the Fe-Si-B base is proven to improve the homogeneity and fineness of microstructure as well as enhance the magnetic behavior of these alloys. In this research work, we have studied the effect of adding copper and niobium to the Fe-Si-B base alloy. Previous studies have shown that magnetic alloys show better magnetic properties when their microstructure consists of nanocrystals embedded in an amorphous matrix. In …


Marine Robot Sample Retrieving System, Valeriya Chulyukina, Noah Villar, Kekoa Blair, Mandeep Singh, Nathan Burke Apr 2022

Marine Robot Sample Retrieving System, Valeriya Chulyukina, Noah Villar, Kekoa Blair, Mandeep Singh, Nathan Burke

Interdisciplinary Design Senior Theses

The exploration of our underwater ecosystems is critical. The aquatic ecosystem has a significant effect on human life, yet our understanding of the oceanic environment is severely lacking. Santa Clara University’s Robotic Systems Lab contributes to subsea exploration through its investment in remotely operated vehicle (ROV) technology. This project was done with the guidance of not only professors in the Robotics Systems Lab, but also stakeholders from the US Geological Survey scientists and researchers from the Monterey Bay Aquarium Research Institute (MBARI). Our team goal was to further advance SCU’s efforts by creating a sediment sample collection system consisting of …


Expanding Faculty-Student Interactions In Statics: An Exploratory Study Of A Statics Course With Learning Assistants, Valerie V. Bracho Perez Mar 2022

Expanding Faculty-Student Interactions In Statics: An Exploratory Study Of A Statics Course With Learning Assistants, Valerie V. Bracho Perez

FIU Electronic Theses and Dissertations

Statics is one of the first fundamental engineering classes within the ME undergraduate curriculum, in which a student’s performance in the course can impact their overall academic success. Recent efforts to enhance students learning in fundamental engineering courses have included integrating Learning Assistants (LAs), undergraduate peers who have previously excelled in the course, into the instructional team of the course. The purpose of this Master's thesis is to explore the enactment of a Statics classroom with LAs, the interactions that characterize it, and the impact it has on the students and instructional teams. A qualitative case study of a Statics …


Airflow Impact Upon Remote Laser Welding Quality, Baixuan Yang Jan 2022

Airflow Impact Upon Remote Laser Welding Quality, Baixuan Yang

Mechanical Engineering Research Theses and Dissertations

Laser induced plasma-plume and condensed particles attenuate the laser beam energy, resulting in keyhole instability and lacking penetration. There are various airflow devices that are currently used in both industrial and laboratory laser welding settings to suppress the detrimental effect of plasma plume and hot spatters. A systematic experimental and numerical study is presented in this dissertation that investigates different external airflow effects on the remote laser welding process used in automotive manufacturing applications.

The vertical airflow impact on the remote laser welding was first studied experimentally. The airflow velocity profiles of a coaxial vertical flow device were measured using …


Behavior Of 3d Printed Polymeric Triply Periodic Minimal Surface (Tpms) Cellular Structures Under Low Velocity Impact Loads, Jesse James Leiffer Jan 2022

Behavior Of 3d Printed Polymeric Triply Periodic Minimal Surface (Tpms) Cellular Structures Under Low Velocity Impact Loads, Jesse James Leiffer

Browse all Theses and Dissertations

Surface-based lattice structures such as triply periodic minimal surface (TPMS) lattices are lightweight structures that are widely being investigated for applications in automotive, aerospace, military, railway, and naval structures. Due to the recent advent of three-dimensional (3D) printing (3DP) technologies, architected cellular materials such as surface- or strut-based periodic lattice cell structures have emerged as a unique class of lightweight metamaterials. These materials possess enhanced strength to weight ratio, high stiffness, exceptional capabilities in reducing noise and vibration, insulating heat, and effective impact energy absorption. Understanding the impact behavior of such materials are important so that they can be reliably …


Cool Thermal Energy Storage: Water And Ice To Alternative Phase Change Materials, Sandra K. S. Boetcher Jan 2022

Cool Thermal Energy Storage: Water And Ice To Alternative Phase Change Materials, Sandra K. S. Boetcher

Publications

Cool thermal energy storage has a long history dating back to ancient times with modern developments beginning in the mid-nineteenth century where blocks of ice were cut from frozen lakes for cooling applications. Today, the prevalent mode of thermal energy storage is the utilization of ice tanks in commercial buildings for peak shaving and load shifting. In this chapter, a summary of different types of water/ice thermal energy storage systems is provided; an overview of alternative phase change materials for use in cool thermal energy storage is given; and alternative phase change material thermal energy systems, their implementation, challenges, and …


Refrigeration & Pressure Circuits For The Test Apparatus On Triaxial Properties Of Polymer Foams At Arctic Temperatures, Nathaniel Ackerman Jan 2022

Refrigeration & Pressure Circuits For The Test Apparatus On Triaxial Properties Of Polymer Foams At Arctic Temperatures, Nathaniel Ackerman

Williams Honors College, Honors Research Projects

The objective of this project is to modify the previous testing apparatus used by Dr. M. Hoo Fatt for exploration of Crushing Behavior of Polymer Foams in Sandwich Structures Operating in Arctic Regions commissioned by the Office of Naval Research and performed under the University of Akron’s Mechanical Engineering testing facilities. To do this, it is required to design a system capable of operating at a constant temperature during a testing cycle, reaching down to -60⁰C. This apparatus must also be compatible with prior equipment, facilities, persons, samples, and media.

Primarily, a copper-tube refrigeration coil design was considered to lead …


Simulation Of Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Sue Bruggeman Jan 2022

Simulation Of Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Sue Bruggeman

Browse all Theses and Dissertations

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a non-linear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Printing, Characterization, And Mechanical Testing Of Additively Manufactured Refractory Metal Alloys, Brianna M. Sexton Jan 2022

Printing, Characterization, And Mechanical Testing Of Additively Manufactured Refractory Metal Alloys, Brianna M. Sexton

Browse all Theses and Dissertations

Refractory metal alloys in the tungsten molybdenum rhenium ternary system were additively manufactured using laser power bed fusion. Four ternary alloys with varying concentrations of tungsten, molybdenum, and rhenium were manufactured and manufactured again with an addition of 1 wt% hafnium carbide. Samples were heat treated to heal cracks, reduce porosity, and reduce inhomogeneity. Material microstructure was characterized before and after heat treatment using microscopy, energy dispersive x-ray spectroscopy, and electron backscatter diffraction mapping. Mechanical testing was conducted on both three-point bend specimens and compression specimens, resulting in maximum bending strengths of 677.86 MPa, and maximum compression 0.2% yield strengths …


Molecular Dynamics Simulation Study Of A Polymer Droplet Transport Over An Array Of Spherical Nanoparticles, Anish Thomas Jan 2022

Molecular Dynamics Simulation Study Of A Polymer Droplet Transport Over An Array Of Spherical Nanoparticles, Anish Thomas

Browse all Theses and Dissertations

This study uses molecular dynamics simulations to evaluate the dynamic behavior of a partially wetting polymer droplet driven over a nanostructured interface. We consider the bead-spring model to represent a polymeric liquid that partially wets a rough surface composed of a periodic array of spherical particles. Results show that at sufficiently small values of external force, the droplet remains pinned at the particle's surface, whereas above the threshold its motion consists of alternating periods of pinning and rapid displacements between neighboring particles. The latter process involves large periodic variation of the advancing and receding contact angles due to the attachment …


Vibration Bending Fatigue Analysis Of Additively Repaired Ti-6al-4v Airfoil Blades, Lucas Jordan Smith Jan 2022

Vibration Bending Fatigue Analysis Of Additively Repaired Ti-6al-4v Airfoil Blades, Lucas Jordan Smith

Browse all Theses and Dissertations

Repairing airfoil blades is necessary to extend the life of turbine engines. Directed energy deposition (DED) additive manufacturing (AM) provides the ability to add material at a specific location on an existing component. In this work, AM repairs on Ti-6Al-4V airfoil blades were analyzed to determine what effect the repair will have on the blade performance in high cycle vibration fatigue testing. Targeted sections were cut out of airfoil blades near high stress locations and repaired using DED. To understand the defects that arose with this type of repair, computed tomography imaging was used to quantify the defects from the …


Design Of A Surrogate Hypersonic Inlet For The Hifire-6 Configuration, Joseph W. Mileski Jan 2022

Design Of A Surrogate Hypersonic Inlet For The Hifire-6 Configuration, Joseph W. Mileski

Browse all Theses and Dissertations

Shock wave-boundary layer interactions can significantly impact the operability of high-speed inlets by inducing flow separation. This flow separation is difficult to visualize in three-dimensional, inward-turning inlets because of the curved surfaces that form their internal flow paths. To remedy this challenge, a surrogate test article was created. Using the results from a previously completed Computational Fluid Dynamic (CFD) analysis of the HIFiRE-6, a surrogate inlet with a rectangular isolator section was streamline-traced, allowing for the use of schlieren imagery to capture the separation bubble. This thesis discusses the process of developing the test article. Experimental results from a planned …


Demonstration Of High-Temperature Operation Of Beta-Gallium Oxide (Β-Ga2o3) Metal-Oxide-Semiconductor Field Effect Transistors (Mosfet) With Electrostatic Model In Comsol, Nicholas Paul Sepelak Jan 2022

Demonstration Of High-Temperature Operation Of Beta-Gallium Oxide (Β-Ga2o3) Metal-Oxide-Semiconductor Field Effect Transistors (Mosfet) With Electrostatic Model In Comsol, Nicholas Paul Sepelak

Browse all Theses and Dissertations

β-Ga2O3 is a robust semiconductor material set with a large band gap of ~4.8 eV, low intrinsic carrier concentration, and high melting point that offers a stable platform for operating electronic devices at high temperatures and extreme environments. The first half of this thesis will cover the fabrication of a fixture and packaging to test electronic components at high temperatures. Then it will highlight the characterization of β-Ga2O3 field effect transistors from room temperature (RT) up to 500 °C. The devices, fabricated with Ni/Au and Al2O3 gate metal-oxide-semiconductor (MOS), demonstrate stable operation up to 500 oC. The tested device shows …


Solution-Processed Flexible Broadband Zno Photodetector Modified By Ag Nanoparticles, N. P. Klochko, K. S. Klepikova, I. V. Khrypunova, V. R. Kopach, I. I. Tyukhov, S. I. Petrushenko, S. V. Dukarov, V. M. Sukhov, M. V. Kirichenko, A. L. Khrypunova Dec 2021

Solution-Processed Flexible Broadband Zno Photodetector Modified By Ag Nanoparticles, N. P. Klochko, K. S. Klepikova, I. V. Khrypunova, V. R. Kopach, I. I. Tyukhov, S. I. Petrushenko, S. V. Dukarov, V. M. Sukhov, M. V. Kirichenko, A. L. Khrypunova

Faculty Research, Scholarly, and Creative Activity

In this work, we present flexible broadband photodetectors (PDs) fabricated by a deposition of nanostructured zinc oxide (ZnO) films on polyimide (PI) substrates by using cheap and scalable aqueous method Successive Ionic Layer Adsorption and Reaction (SILAR). In order to increase the long-wavelength absorption of the nanostructured ZnO layer, we created its intrinsic defects, including oxygen vacancies by post-treatment at 300 °C in vacuum and thus the light-sensitive material ZnO/PI was obtained. Then we applied silver nanoparticles (Ag NPs) from a silver sol onto a nanostructured ZnO film, which were visualized using SEM in the form of spheres up to …


Mechanical Engineering News, Georgia Southern University Oct 2021

Mechanical Engineering News, Georgia Southern University

Mechanical Engineering News (2013-2023)

  • Viking Ax Cast by Students


Mechanical Engineering News, Georgia Southern University Oct 2021

Mechanical Engineering News, Georgia Southern University

Mechanical Engineering News (2013-2023)

  • Dr. Cesmeci Awarded $1.1 mil DOE Grant
  • Dr. Cesmeci Seeking to Student Researchers for DOE Grant


Mechanical Engineering News, Georgia Southern University Oct 2021

Mechanical Engineering News, Georgia Southern University

Mechanical Engineering News (2013-2023)

  • Undergrad Researcher to Present at National Conference


Liquid-Vapor Distributions In Evacuated Small Diameter Channels For Improved Accuracy Of Initial Conditions In Modeling Of Oscillating Heat Pipes, Travis Mayberry Oct 2021

Liquid-Vapor Distributions In Evacuated Small Diameter Channels For Improved Accuracy Of Initial Conditions In Modeling Of Oscillating Heat Pipes, Travis Mayberry

Mechanical Engineering Research Theses and Dissertations

Oscillating heat pipes, also known as pulsating heat pipes, are increasingly becoming a preferred high-performance thermal ground plane in a variety of heat spreading applications due to a number of advantages over traditional copper-water wicked heat pipes, including their lighter weight, thinner profiles, simpler fabrication, and greater variety of material and working fluid options. A major barrier to even wider adoption, however, is the lack of comprehensive analytical models to simulate their performance. A key input to first principles models simulating the fundamental physics of the devices is the initial condition of liquid and vapor segment lengths and their distribution …


Geometrically Complex Planar Heat Exchangers, Derli Dias Do Amaral Junior, Jose Lage Aug 2021

Geometrically Complex Planar Heat Exchangers, Derli Dias Do Amaral Junior, Jose Lage

Mechanical Engineering Research Theses and Dissertations

In this study, geometrically complex planar heat exchangers, designed in line with the Constructal Law and operating at steady-state, are investigated numerically. The work is divided into two parts, one focusing on diffusion heat transfer in a rectangular plane and another on conjugate diffusion-convection heat transfer in a circular plane heat exchanger.

In the first part, a heat generating rectangular solid volume made of a low conductivity material is cooled through a small, isothermal side-section of the domain. The diffusion cooling process is improved by distributing within the heat generating material a fixed amount of a high conductivity material. The …


Mechanical Engineering News, Georgia Southern University Aug 2021

Mechanical Engineering News, Georgia Southern University

Mechanical Engineering News (2013-2023)

  • Department Hosts Summer Camp for HS Students


Anisotropic Plasticity Modeling Of Thin Sheets And Its Application To Micro Channel Forming Of Steel Foils, Jie Sheng Jul 2021

Anisotropic Plasticity Modeling Of Thin Sheets And Its Application To Micro Channel Forming Of Steel Foils, Jie Sheng

Mechanical Engineering Research Theses and Dissertations

Thin sheet metals and ultrathin metal foils produced by industrial rolling processes are textured polycrystalline materials and their mechanical behaviors may depend strongly on the orientation of applied loading. Consideration of such plastic anisotropy in advanced modeling of these materials is of the paramount importance in designing optimal manufacturing processes for automotive and other applications using finite element methods. This research addresses several critical issues in anisotropic plasticity modeling and its applications in analyzing micro channel forming of ultrathin stainless-steel foils. An experimental study has first been carried out on the accuracy and sensitivity of measuring the plastic strain ratios …


High Temperature Degradation In Gan-Based Hall Effect Sensors, Alexis Anne Krone Jul 2021

High Temperature Degradation In Gan-Based Hall Effect Sensors, Alexis Anne Krone

Graduate Theses and Dissertations

This research focuses on understanding the effects of accelerated aging through temperature and environment on novel gallium nitride-based Hall effect magnetic field sensors and determining device reliability under electric vehicle operating conditions. The device reliability was modeled using accelerated aging for the temperatures of 200 °C, 350 °C, 450 °C, and 600 °C under various time steps unique to each temperature and either air, which is identical to operating circumstances, or argon, which would model the hermetic packaging environment. Using a high temperature furnace and oven, devices underwent high temperature storage tests at a chosen temperature and time step. Afterwards, …


Mechanical Engineering News, Georgia Southern University Jun 2021

Mechanical Engineering News, Georgia Southern University

Mechanical Engineering News (2013-2023)

  • Two Student Researchers Receive Engineering Awards


Adjustable Height Pedestal Grinder Stand, Josef Zagorski, Zachary Wedel, Michael Sitar, Daniel Zevenbergen Jun 2021

Adjustable Height Pedestal Grinder Stand, Josef Zagorski, Zachary Wedel, Michael Sitar, Daniel Zevenbergen

Mechanical Engineering

Pedestal grinders are one of the most common machines found in machine shops today. The current industry standard for mounting a grinder is on a fixed single pillar, cast iron pedestal. A fixed pedestal allows for no vertical adjustment for shop users of different sizes and is a safety hazard. This report further defines this problem and proposes an iterative design process to meet the needs and wants of the customer. The adjustable-height pedestal grinder stand Senior Project team used this problem and design process to successfully complete the project within the allotted time. The first major deliverable and milestone …