Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh Aug 2022

Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh

McKelvey School of Engineering Theses & Dissertations

Current 3-D finite-state wake models are incapable of simulating a maneuver in which the sign of the free-stream velocity changes direction and the rotor enters its own wake -- as might occur in the case of a helicopter which ascends and then descends. It is the purpose of this work to create a 2-D finite-state wake model which is capable of handling changes in free-stream direction as a precursor to development of a 3-D model that can do the same.

The 2-D finite-state model used for reentry modifications is an existing model created by Peters, Johnson, and Karunamoorthy. By the …


Wake Bifurcations Behind Two Circular Disks In Tandem Arrangement, Jianzhi Yang, Xiaowei Wu, Minghou Liu, Changjian Wang, Yuxin Wu, Zhihe Shen Jun 2022

Wake Bifurcations Behind Two Circular Disks In Tandem Arrangement, Jianzhi Yang, Xiaowei Wu, Minghou Liu, Changjian Wang, Yuxin Wu, Zhihe Shen

Mechanical and Materials Engineering Faculty Publications and Presentations

The wake bifurcations behind two circular disks in tandem arrangement are investigated through numerical simulations. The separation distance between the disks, S/d, is chosen at 1, 2, 4, and 6, and the Reynolds number, Re, lies in the range of 100 Re 500. The wake dynamics are examined in terms of the flow structures as well as drag and lift coefficient characteristics. Seven main wake regimes are observed in the considered (Re, S/d) space: steady state (SS), Zig-zig (Zz) mode, standing wave mode, periodic state with reflectional symmetry breaking (RSB), periodic state with double-helical (DH) structures shedding, periodic state with …


Characteristics Of The Wake Of An Inclined Prolate Spheroid In Uniform Shear Flow, Zhe Wang, Jianzhi Yang, Helge I. Andersson, Xiaowei Wu, Yuxin Wu, Liping Wang, Minghou Liu May 2022

Characteristics Of The Wake Of An Inclined Prolate Spheroid In Uniform Shear Flow, Zhe Wang, Jianzhi Yang, Helge I. Andersson, Xiaowei Wu, Yuxin Wu, Liping Wang, Minghou Liu

Mechanical and Materials Engineering Faculty Publications and Presentations

Flow around an inclined 5:2 prolate spheroid with the incidence angle α = 45° is numerically investigated in a uniform shear flow. The Reynolds number based on the inflow center velocity Uc and the volume-equivalent sphere diameter De of the spheroid are considered at Re = 480, 600, 700, and 750. The non-dimensional shear rate K is ranged from 0 to 0.1. Five qualitatively different wake modes are observed, including a new mode characterized by multi-periodic shedding of hairpin vortices with regular rotation of the separation region. In general, the wake transition is suppressed with increasing shear rate. …


Development & Validation Of A Piv System For Obtaining Data From A Uasb Reactor, Camila D' Bastiani, Gerald Gallagher, David Kennedy, Anthony Reynolds Apr 2022

Development & Validation Of A Piv System For Obtaining Data From A Uasb Reactor, Camila D' Bastiani, Gerald Gallagher, David Kennedy, Anthony Reynolds

Conference Papers

Anaerobic digestion processes can generate energy in the form of biogas while treating organic wastewater. The efficiency of the treatment, and thus the generation of biogas, is closely linked to the type and design of the reactor, and the technology used. Granular anaerobic digestion technology offers advantages such as a higher loading rate and reduction of the space needed. However, the hydrodynamics inside this type of reactor can be complex due to the presence of solids (granules) and gas (biogas) phases along with the liquid phase (wastewater). This is one of the reasons why the study and optimization of reactors …


Improving Quantification Of Mitral Regurgitation Through Computational Fluid Dynamics And Ex Vivo Testing, Alexandra Flowers Jan 2022

Improving Quantification Of Mitral Regurgitation Through Computational Fluid Dynamics And Ex Vivo Testing, Alexandra Flowers

Electronic Theses and Dissertations

Mitral regurgitation (MR) is a prominent cardiac disease affecting more than two million people in the United States alone. In order for patients to receive proper therapy, regurgitant volume must first be quantified. As there are an array of methods to do so, the proximal isovelocity surface area (PISA) method continues to be the most accurate and clinically used method. However, there are some difficulties obtaining the necessary measurements need for this when performing transthoracic echocardiography. This study aims to evaluate and present techniques that may be used to more accurately quantify regurgitation through ex vivo testing and computational fluid …


Investigating Ground Interactions Of A Rotocraft Landing Vehicle On Titan, Adam Rozman Jan 2022

Investigating Ground Interactions Of A Rotocraft Landing Vehicle On Titan, Adam Rozman

Honors Undergraduate Theses

The exploration of celestial bodies has recently advanced from rovers to rotorcraft. This includes the recent flights of Mars Ingenuity and the upcoming Dragonfly mission to explore the terrain of Saturn’s moon Titan as part of NASA’s New Frontiers Program. Flight-based landers can travel quickly to sites kilometers apart and land in complex terrain. Although cruise conditions for these rotorcrafts are well understood, studies are necessary to understand take-off and landing. In ground effect conditions, a rotor wake impinges and reflects off the ground, creating changes in aerodynamics such as increased lift. Additionally, operating over loose surfaces, the rotors can …


Mean Pressure Gradient Effects On Flame-Flow Dynamics In A Cavity Combustor, David M. Smerina Jan 2022

Mean Pressure Gradient Effects On Flame-Flow Dynamics In A Cavity Combustor, David M. Smerina

Honors Undergraduate Theses

Pressure gradient confinement effects are experimentally investigated within a cavity combustor to analyze the flame interactions of premixed, cavity stabilized, flames in a high-speed combustor. Pressure gradient confinement effects are generated in a dual mode ramjet-scramjet (DMSR) by varying the wall geometry to form converging, diverging, and nominal configurations. The velocity field and flame position are captured temporally using simultaneous high-speed particle image velocimetry (PIV) and CH chemiluminescence. The evolution of the flow field and flame structure are analyzed, and the high temporal resolution of these measurements allows for the characterization of turbulence-flame interactions. Consideration of the combustion mode and …