Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou Mar 2024

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Scalmalloy® is an Al-Mg-Sc-Zr-Based Alloy Specifically Developed for Additive Manufacturing (AM). This Alloy is Designed for Use with a Direct Aging Treatment, as Recommended by the Manufacturer, Rather Than with a Multistep Treatment, as Often Seen in Conventional Manufacturing. Most Work with Scalmalloy® is Conducted using Powder Bed Rather Than Powder-Fed Processes. This Investigation Seeks to Fill This Knowledge Gap and Expand Beyond Single-Step Aging to Promote an overall Balanced AM-Fabricated Component. for This Study, Directed Energy Deposition (DED)-Fabricated Scalmalloy® Components Were Subjected to Low-Temperature Treatments to Minimize Residual Stresses Inherent in the Material Due to the Layer-By-Layer Build Process. …


Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou Nov 2023

Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing (AM) simulations are effective for materials that are well characterized and published; however, for newer or proprietary materials, they cannot provide accurate results due to the lack of knowledge of the material properties. This work demonstrates the process of the application of mathematical search algorithms to develop an optimized material dataset which results in accurate simulations for the laser directed energy deposition (DED) process. This was performed by first using a well-characterized material, Ti-64, to show the error in the predicted melt pool was accurate, and the error was found to be less than two resolution steps. Then, …


Numerical Simulation Of The Donor-Assisted Stir Material For Friction Stir Welding Of Aluminum Alloys And Carbon Steel, Joseph Maniscalco, Abdelmageed A. Elmustafa, Srinivasa Bhukya, Zhenhua Wu Jan 2023

Numerical Simulation Of The Donor-Assisted Stir Material For Friction Stir Welding Of Aluminum Alloys And Carbon Steel, Joseph Maniscalco, Abdelmageed A. Elmustafa, Srinivasa Bhukya, Zhenhua Wu

Mechanical & Aerospace Engineering Faculty Publications

In this research effort, we explore the use of a donor material to help heat workpieces without wearing the tool or adding more heat than necessary to the system. The donor material would typically be a small piece (or pieces) of material, presumably of lower strength than the workpiece but with a comparable melting point. The donor, a sandwich material, is positioned between the tool head and the material to be welded, where the tool initially plunges and heats up in the same manner as the parent material that is intended for welding. The donor material heats up subsequent to …


The Effect Of Nanostructures In Aluminum Alloys Processed Using Additive Manufacturing On Microstructural Evolution And Mechanical Performance Behavior, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou May 2021

The Effect Of Nanostructures In Aluminum Alloys Processed Using Additive Manufacturing On Microstructural Evolution And Mechanical Performance Behavior, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper reviews the status of nanoparticle technology as it relates to the additive manufacturing (AM) of aluminum-based alloys. A broad overview of common AM processes is given. Additive manufacturing is a promising field for the advancement of manufacturing due to its ability to yield near-net-shaped components that require minimal post-processing prior to end-use. AM also allows for the fabrication of prototypes as well as economical small batch production. Aluminum alloys processed via AM would be very beneficial to the manufacturing industry due to their high strength to weight ratio; however, many of the conventional alloy compositions have been shown …


Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal Jun 2020

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal

FIU Electronic Theses and Dissertations

Lightweight metals, such as Aluminum, Magnesium and Titanium, are receiving widespread attention for manufacturing agile structures. However, the mechanical strength of these metals and their alloys fall short of structural steels, curtailing their applicability in engineering applications where superior load-bearing ability is required. There is a need to effectively augment the deformation- and failure-resistance of these metals without compromising their density advantage.

This dissertation explores the mechanical reinforcement of the aforementioned lightweight metal matrices by utilizing Boron Nitride Nanotube (BNNT), a 1D nanomaterial with extraordinary mechanical properties. The nanotubes are found to resist thermo-oxidative transformations up to ~750°C, establishing their …


Scalable Patterning Using Laser-Induced Shock Waves, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford, Zachary Thomas, Omer San, Haluk E. Karaca, Ali O. Er Apr 2018

Scalable Patterning Using Laser-Induced Shock Waves, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford, Zachary Thomas, Omer San, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto …


Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime Nov 2017

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime

FIU Electronic Theses and Dissertations

In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, sonication time, and melt temperature on microstructure and microhardness of Al 6061 alloy is evaluated. The effect of UST on the dispersion of tungsten disulfide (WS2) and carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% increase in the microhardness for optimum processing conditions. The cavitation process induced by UST is responsible for the refinement in microstructure and increase of hardness by enhancing the degassing and nucleation …


Aluminum Matrix Syntactic Foam Fabricated With Additive Manufacturing, M. Spratt, Joseph William Newkirk, K. Chandrashekhara Aug 2017

Aluminum Matrix Syntactic Foam Fabricated With Additive Manufacturing, M. Spratt, Joseph William Newkirk, K. Chandrashekhara

Materials Science and Engineering Faculty Research & Creative Works

Syntactic foams are lightweight structural composites with hollow reinforcing particles embedded in a soft matrix. These materials have applications in transportation, packaging, and armor due to properties such as relatively high specific stiffness, acoustic dampening, and impact absorption. Aluminum matrices are the most widely studied of metal matrix syntactic foams, but there is little to no research in regards to processing the foams with additive manufacturing. It is theorized that the fast cooling rates and limited kinetic energy input of additive could reduce two issues commonly associated with processing syntactic foams: microsphere flotation in the melt and microsphere fracture during …


Resonance Frequencies Of A Spherical Aluminum Shell Subject To Static Internal Pressure, Andrew A. Piacsek, Sami Abdul-Wahid, Robert Taylor May 2012

Resonance Frequencies Of A Spherical Aluminum Shell Subject To Static Internal Pressure, Andrew A. Piacsek, Sami Abdul-Wahid, Robert Taylor

All Faculty Scholarship for the College of the Sciences

Measurements of the vibrational response of a spherical aluminum shell subject to changes in the interior pressure clearly demonstrate that resonance frequencies shift higher as the pressure is increased. The frequency shift appears to be smaller for longitudinal modes than for bending wave modes. The magnitude of frequency shift is comparable to analytical predictions made for thin cylindrical shells. Changes in the amplitudes of resonance peaks are also observed. A possible application of this result is a method for noninvasively monitoring pressure changes inside sealed containers, including intracranial pressure in humans.


A Material System For Reliable Low Voltage Anodic Electrowetting, Mehdi Khodayari, Jose Carballo, Nathan B. Crane Jan 2012

A Material System For Reliable Low Voltage Anodic Electrowetting, Mehdi Khodayari, Jose Carballo, Nathan B. Crane

Faculty Publications

Electrowetting on dielectric is demonstrated with a thin spin-coated fluoropolymer over an aluminum electrode. Previous efforts to use thin spin-coated dielectric layers for electrowetting have shown limited success due to defects in the layers. However, when used with a citric acid electrolyte and anodic voltages, repeatable droplet actuation is achieved for 5000 cycles with an actuation of just 10 V. This offers the potential for low voltage electrowetting systems that can be manufactured with a simple low-cost process.


Microstructural Characterization Of Diode Laser Deposited Ti-6al-4v, Tian Fu, Zhiqiang Fan, Syamala R. Pulugurtha, Todd E. Sparks, Jianzhong Ruan, Frank W. Liou, Joseph William Newkirk Aug 2008

Microstructural Characterization Of Diode Laser Deposited Ti-6al-4v, Tian Fu, Zhiqiang Fan, Syamala R. Pulugurtha, Todd E. Sparks, Jianzhong Ruan, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Direct Metal Deposition (DMD) is an effective approach to manufacturing or repairing a range of metal components. The process is a layer-by-layer approach to building up a three dimensional solid object. The microstructure influences mechanical properties of the deposited parts. Thus, it is important to understand the microstructural features of diode laser deposited parts. This paper presents a microstructure analysis of a diode laser deposited Ti-6Al-4V onto a Ti-6Al-4V substrate. laser deposited parts. This paper presents a microstructure analysis of a diode laser deposited Ti-6Al-4V onto a Ti-6Al-4V substrate.


Grain Boundary Property Determination Through Measurement Of Triple Junction Geometry And Crystallography, Brent L. Adams, D. Casasent, M. Demirel, Bassem S. El-Dasher, D. Kinderlehrer, C. Liu, I. Livshits, F. Manolache, D. Mason, A. Morawiec, W. W. Mullins, S. Ozdemir, Gregory S. Rohrer, Anthony D. Rollett, David M. Saylor, Shlomo Ta'asan, A. Talukder, Chialin T. Wu, C. C. Yang, W. Yang Jan 2006

Grain Boundary Property Determination Through Measurement Of Triple Junction Geometry And Crystallography, Brent L. Adams, D. Casasent, M. Demirel, Bassem S. El-Dasher, D. Kinderlehrer, C. Liu, I. Livshits, F. Manolache, D. Mason, A. Morawiec, W. W. Mullins, S. Ozdemir, Gregory S. Rohrer, Anthony D. Rollett, David M. Saylor, Shlomo Ta'asan, A. Talukder, Chialin T. Wu, C. C. Yang, W. Yang

Faculty Publications

This work was supported primarily by the MRSEC program of the National Science Foundation under Award Number DMR-0079996. Microstructure controls the properties of most useful materials. Thus an ability to control microstructure through the processing of materials is a key to optimization of materials performance. Most materials are polycrystalline and their grain structure is a very important aspect of their microstructure. Thanks to their complexity there is a great variety of grain boundary types even in relatively isotropic materials such as the cubic metals. Simply describing the crystallography requires five (macroscopic) parameters (e.g. disorientation and inclination). Evidently, acquiring a knowledge …


Microstructure Design Of A Two Phase Composite Using Two-Point Correlation Functions, Brent L. Adams, H. Garmestani, G. Saheli Jan 2004

Microstructure Design Of A Two Phase Composite Using Two-Point Correlation Functions, Brent L. Adams, H. Garmestani, G. Saheli

Faculty Publications

This work has been funded under the AFOSR Grant no. F49620-03-1-0011 and Army Research Lab contract no. DAAD17-02-P-0398 and DAAD 19-01-1-0742. Two-point distribution functions are used here as to introduce "Microstructure Sensitive Design" in two-phase composites. Statistical distribution functions are commonly used for the representation of microstructures and also for homogenization of materials properties. The use of two-point statistics allows the composite designer to include the morphology and distribution in addition to the properties of the individual phases and components. Statistical continuum mechanics is used to make a direct link between the microstructure and properties (elastic and plastic) in terms …


Advances In Experimental Method And Analysis For Estimation Of Geometrically-Necessary Dislocations, Brent L. Adams, Bassem S. El-Dasher, Anthony D. Rollett Mar 2003

Advances In Experimental Method And Analysis For Estimation Of Geometrically-Necessary Dislocations, Brent L. Adams, Bassem S. El-Dasher, Anthony D. Rollett

Faculty Publications

The authors wish to thank The Alcoa Technical Research Center for supplying the specimens and performing the compression tests. This work was supported by the MRSEC program of the National Science Foundation under DMR-0079996 as well as Lawrence Livermore Laboratory DOE/DoD Joint Program. An behavior of grain boundaries of the polycrystalline materials over a wide range of length scales during plastic deformation is considered. Electron backscattering diffraction and orientation imaging microscopy provide automated scanning measurements of the lattice orientation near grain boundaries. These methods are useful to set the necessary length scales. The data are presented for directionally-solidified pure Al …


Viewpoint: Experimental Recovery Of Geometrically Necessary Dislocation Density In Polycrystals, Brent L. Adams, Bassem S. El-Dasher, Anthony D. Rollett Aug 2002

Viewpoint: Experimental Recovery Of Geometrically Necessary Dislocation Density In Polycrystals, Brent L. Adams, Bassem S. El-Dasher, Anthony D. Rollett

Faculty Publications

The authors wish to thank The Alcoa Technical Research Center for supplying the specimens and performing the compression tests. This work was supported primarily by the MRSEC program of the National Science Foundation under DMR-0079996. Application of electron backscattering diffraction methods to recover estimates of the geometrically necessary dislocation density is described. The limitations of the method arising from the opacity of crystalline materials and the spatial and angular resolution limits are discussed.


The Effects Of Patch Properties On The Debonding Behavior Of Patched Beam-Plates, Anette M. Karlsson Oct 2000

The Effects Of Patch Properties On The Debonding Behavior Of Patched Beam-Plates, Anette M. Karlsson

Mechanical Engineering Faculty Publications

The debonding characteristics of patched structures are investigated in this study by means of an analytical model. In particular, the effects the lay-up sequence and edge tapering of a carbon-reinforced epoxy patch, as well as the beveling of an aluminum patch, have on the initiation, stability, and extent of the debonding are considered. The results presented show that both the degree of edge-tapering and the patch properties must be carefully selected in order to optimize the patched structure. It is also shown that when designing a patched system, it is important to model the correct boundary and load conditions to …


Microstructure And Deposition Rate Of Aluminum Thin Films From Chemical Vapor Deposition With Dimethylethylamine Alane, Byoung-Youp Kim, Xiaodong Li, Shi-Woo Rhee Jun 1996

Microstructure And Deposition Rate Of Aluminum Thin Films From Chemical Vapor Deposition With Dimethylethylamine Alane, Byoung-Youp Kim, Xiaodong Li, Shi-Woo Rhee

Faculty Publications

Deposition of aluminumfilm from DMEAA in the temperature range of 100–300 °C has been studied. In this temperature range, there is a maximum deposition rate at around 150 °C. The film deposited at 190 °C has elongated blocklike grain shapes, which are ∼600 nm in width and 930 nm in length. Grains in the film deposited at 150 °C showed an equiaxed structure with grain size in the range of 100–300 nm in a film with 600 nm thickness. Aluminum oxide particle inclusion was observed especially at high deposition temperature. Plausible reaction pathways of DMEAA dissociation were suggested to explain …


Structural Characterization Of Aluminum Films Deposited On Sputtered-Titanium Nitride/ Silicon Substrate By Metalorganic Chemical Vapor Deposition From Dimethylethylamine Alane, Xiaodong Li, Byoung-Youp Kim, Shi-Woo Rhee Dec 1995

Structural Characterization Of Aluminum Films Deposited On Sputtered-Titanium Nitride/ Silicon Substrate By Metalorganic Chemical Vapor Deposition From Dimethylethylamine Alane, Xiaodong Li, Byoung-Youp Kim, Shi-Woo Rhee

Faculty Publications

Alfilmsdeposited on sputtered‐TiN/Si substrate by metalorganic chemical vapor deposition(MOCVD) from dimethylethylamine alane (DMEAA) were characterized using x‐ray diffraction(XRD),Auger electron spectroscopy(AES),atomic force microscopy(AFM), and transmission electron microscopy (TEM). The TiN filmsputtered on the Si has a preferred orientation along the growth direction with the 〈111〉 of the film parallel to the Si〈111〉. Sputtering of the TiN film on the Si induced strains at the interface. The TiN/Si interface is flat while the Al/TiN interface is rough. There exist many dislocations at the Al/TiN interface. The Al2O3 phase was formed at the Al/TiN interface during the early stages of …


Long-Term Effects Of Neutron Absorber And Fuel Matrix Corrosion On Criticality, William Culbreth, P. Zielinski May 1994

Long-Term Effects Of Neutron Absorber And Fuel Matrix Corrosion On Criticality, William Culbreth, P. Zielinski

Mechanical Engineering Faculty Research

Proposed waste package designs will require the addition of neutron absorbing material to prevent the possibility of a sustained chain reaction occurring in the fuel in the event of water intrusion. Due to the low corrosion rates of the fuel matrix and the Zircaloy cladding, there is a possibility that the neutron absorbing material will corrode and leak from the waste container long before the subsequent release of fuel matrix material. An analysis of the release of fuel matrix and neutron absorber material based on a probabilistic model was conducted and the results were used to prepare input to KENO-V, …