Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Aluminum

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 58

Full-Text Articles in Engineering

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou Mar 2024

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Scalmalloy® is an Al-Mg-Sc-Zr-Based Alloy Specifically Developed for Additive Manufacturing (AM). This Alloy is Designed for Use with a Direct Aging Treatment, as Recommended by the Manufacturer, Rather Than with a Multistep Treatment, as Often Seen in Conventional Manufacturing. Most Work with Scalmalloy® is Conducted using Powder Bed Rather Than Powder-Fed Processes. This Investigation Seeks to Fill This Knowledge Gap and Expand Beyond Single-Step Aging to Promote an overall Balanced AM-Fabricated Component. for This Study, Directed Energy Deposition (DED)-Fabricated Scalmalloy® Components Were Subjected to Low-Temperature Treatments to Minimize Residual Stresses Inherent in the Material Due to the Layer-By-Layer Build Process. …


Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou Nov 2023

Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing (AM) simulations are effective for materials that are well characterized and published; however, for newer or proprietary materials, they cannot provide accurate results due to the lack of knowledge of the material properties. This work demonstrates the process of the application of mathematical search algorithms to develop an optimized material dataset which results in accurate simulations for the laser directed energy deposition (DED) process. This was performed by first using a well-characterized material, Ti-64, to show the error in the predicted melt pool was accurate, and the error was found to be less than two resolution steps. Then, …


Numerical Simulation Of The Donor-Assisted Stir Material For Friction Stir Welding Of Aluminum Alloys And Carbon Steel, Joseph Maniscalco, Abdelmageed A. Elmustafa, Srinivasa Bhukya, Zhenhua Wu Jan 2023

Numerical Simulation Of The Donor-Assisted Stir Material For Friction Stir Welding Of Aluminum Alloys And Carbon Steel, Joseph Maniscalco, Abdelmageed A. Elmustafa, Srinivasa Bhukya, Zhenhua Wu

Mechanical & Aerospace Engineering Faculty Publications

In this research effort, we explore the use of a donor material to help heat workpieces without wearing the tool or adding more heat than necessary to the system. The donor material would typically be a small piece (or pieces) of material, presumably of lower strength than the workpiece but with a comparable melting point. The donor, a sandwich material, is positioned between the tool head and the material to be welded, where the tool initially plunges and heats up in the same manner as the parent material that is intended for welding. The donor material heats up subsequent to …


Structural Performance Of Single-Skin Glass Façade Systems Exposed To Fire, Mohamed Badr, Maged A. Youssef, Salah El-Din F. El-Fitiany, Ajitanshu Vedrtnam Aug 2022

Structural Performance Of Single-Skin Glass Façade Systems Exposed To Fire, Mohamed Badr, Maged A. Youssef, Salah El-Din F. El-Fitiany, Ajitanshu Vedrtnam

Civil and Environmental Engineering Publications

Purpose

Understanding the structural performance of external glass curtain walls (façades) during fire exposure is critical for the safety of the occupants, as their failure can lead to fire spread throughout the entire building. This concern is magnified by the recent increase in fire incidents and wildfires. This paper presents the first simplified technique to model single skin façades during fire exposure, and, then utilizes it to examine the structural behaviour of vertical, inclined, and oversized façade panels.

Design/methodology/approach

The proposed technique is based on conducting simplified heat transfer calculations, and, then utilizing a widely used structural analysis software to …


Influence Of Aluminum Addition On The Laser Powder Bed Fusion Of Copper-Aluminum Mixtures, Nada Kraiem, Loic Constantin, A. Mao, Fei Wang, Bai Cui, Jean-François Silvain, Yongfeng Lu Jul 2022

Influence Of Aluminum Addition On The Laser Powder Bed Fusion Of Copper-Aluminum Mixtures, Nada Kraiem, Loic Constantin, A. Mao, Fei Wang, Bai Cui, Jean-François Silvain, Yongfeng Lu

Department of Electrical and Computer Engineering: Faculty Publications

The high optical reflectivity of copper (Cu) in the near infrared (NIR) domain and its elevated heat dissipation make Cu a challenging metal for laser powder bed fusion (LPBF), even with high energy densities (EDs). In this study, we demonstrated that adding aluminum (Al) powder by as little as 0.75, 1.5, and 3 wt.% substantially enhances Cu processability, leading to denser (up to 98%) and smoother (Ra = 3.3 𝜇m) Cu-Al parts as compared to 95% and 18 𝜇m, respectively, for the parts printed using pure Cu. In addition, this method reduces the ED required by a factor of two …


The Effect Of Nanostructures In Aluminum Alloys Processed Using Additive Manufacturing On Microstructural Evolution And Mechanical Performance Behavior, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou May 2021

The Effect Of Nanostructures In Aluminum Alloys Processed Using Additive Manufacturing On Microstructural Evolution And Mechanical Performance Behavior, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper reviews the status of nanoparticle technology as it relates to the additive manufacturing (AM) of aluminum-based alloys. A broad overview of common AM processes is given. Additive manufacturing is a promising field for the advancement of manufacturing due to its ability to yield near-net-shaped components that require minimal post-processing prior to end-use. AM also allows for the fabrication of prototypes as well as economical small batch production. Aluminum alloys processed via AM would be very beneficial to the manufacturing industry due to their high strength to weight ratio; however, many of the conventional alloy compositions have been shown …


Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal Jun 2020

Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering And Stress-Transfer Mechanics, Pranjal Nautiyal

FIU Electronic Theses and Dissertations

Lightweight metals, such as Aluminum, Magnesium and Titanium, are receiving widespread attention for manufacturing agile structures. However, the mechanical strength of these metals and their alloys fall short of structural steels, curtailing their applicability in engineering applications where superior load-bearing ability is required. There is a need to effectively augment the deformation- and failure-resistance of these metals without compromising their density advantage.

This dissertation explores the mechanical reinforcement of the aforementioned lightweight metal matrices by utilizing Boron Nitride Nanotube (BNNT), a 1D nanomaterial with extraordinary mechanical properties. The nanotubes are found to resist thermo-oxidative transformations up to ~750°C, establishing their …


Effect Of Zr Additions On Thermal Stability Of Al-Cu Precipitates In As-Cast And Cold Worked Samples, Kyle Deane, Paul G. Sanders May 2018

Effect Of Zr Additions On Thermal Stability Of Al-Cu Precipitates In As-Cast And Cold Worked Samples, Kyle Deane, Paul G. Sanders

Michigan Tech Publications

While Zr is frequently added to Al alloys to control grain size with the formation of large (>1 μm) primary precipitates, little research has been conducted on the effect of nanoscale Al3Zr precipitates on Al alloys. By comparing the precipitation and corresponding strength evolution between Al-Cu-Zr alloys with different Zr concentrations, the effects of Zr on Al-Cu precipitation with and without primary Al3Zr precipitates can be observed. In the absence of these large precipitates, all Al3Zr phases can be formed, through high temperature aging treatments, as a dispersion of nanoprecipaites inside the Al …


Scalable Patterning Using Laser-Induced Shock Waves, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford, Zachary Thomas, Omer San, Haluk E. Karaca, Ali O. Er Apr 2018

Scalable Patterning Using Laser-Induced Shock Waves, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Claire Ottman, Dylan Sanford, Zachary Thomas, Omer San, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto …


Understanding Homogeneous Nucleation In Solidification Of Aluminum By Molecular Dynamics Simulations, A. Mahata, Mohsen Asle Zaeem, M. I. Baskes Mar 2018

Understanding Homogeneous Nucleation In Solidification Of Aluminum By Molecular Dynamics Simulations, A. Mahata, Mohsen Asle Zaeem, M. I. Baskes

Materials Science and Engineering Faculty Research & Creative Works

Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, …


A Constitutive Model For Entangled Polydisperse Linear Flexible Polymers With Entanglement Dynamics And A Configuration Dependent Friction Coefficient. Part I: Model Derivation, David W. Mead, Saman Monjezi, Joontaek Park Jan 2018

A Constitutive Model For Entangled Polydisperse Linear Flexible Polymers With Entanglement Dynamics And A Configuration Dependent Friction Coefficient. Part I: Model Derivation, David W. Mead, Saman Monjezi, Joontaek Park

Chemical and Biochemical Engineering Faculty Research & Creative Works

A new polydisperse "toy" constitutive model is derived and developed from fundamental principles and ideas governing the nonlinear rheology of linear flexible polymers [Mead et al., J. Rheol. 59, 335-363 (2015)]. Specifically, the new model is comprised of four fundamental pieces. First, the model contains a simple differential description of the entanglement dynamics of discrete entanglement pairs. Second, the model contains a differential description of the ij entanglement pair orientation tensor dynamics. Third, following a similar development by Mead and Mishler [J. Non-Newtonian Fluid Mech. 197, 61-79 and 80-90 (2013).], a diluted stretch tube is constructed to describe the relative …


Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime Nov 2017

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime

FIU Electronic Theses and Dissertations

In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, sonication time, and melt temperature on microstructure and microhardness of Al 6061 alloy is evaluated. The effect of UST on the dispersion of tungsten disulfide (WS2) and carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% increase in the microhardness for optimum processing conditions. The cavitation process induced by UST is responsible for the refinement in microstructure and increase of hardness by enhancing the degassing and nucleation …


Aluminum Matrix Syntactic Foam Fabricated With Additive Manufacturing, M. Spratt, Joseph William Newkirk, K. Chandrashekhara Aug 2017

Aluminum Matrix Syntactic Foam Fabricated With Additive Manufacturing, M. Spratt, Joseph William Newkirk, K. Chandrashekhara

Materials Science and Engineering Faculty Research & Creative Works

Syntactic foams are lightweight structural composites with hollow reinforcing particles embedded in a soft matrix. These materials have applications in transportation, packaging, and armor due to properties such as relatively high specific stiffness, acoustic dampening, and impact absorption. Aluminum matrices are the most widely studied of metal matrix syntactic foams, but there is little to no research in regards to processing the foams with additive manufacturing. It is theorized that the fast cooling rates and limited kinetic energy input of additive could reduce two issues commonly associated with processing syntactic foams: microsphere flotation in the melt and microsphere fracture during …


Ballistic Limit Equations For Non-Aluminum Projectiles Impacting Dual-Wall Spacecraft Systems, William P. Schonberg, J. Martin Ratliff Apr 2017

Ballistic Limit Equations For Non-Aluminum Projectiles Impacting Dual-Wall Spacecraft Systems, William P. Schonberg, J. Martin Ratliff

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

One of the primary design considerations of earth-orbiting spacecraft is the mitigation of the damage that might occur from an on-orbit MMOD impact. Traditional damage-resistant design consists of a 'bumper' that is placed a small distance away from a spacecraft component or from the wall of the element in which it is housed. The performance of such a multi-wall structural element is typically characterized by its ballistic limit equation (BLE), which defines the threshold particle size that results in a failure of the spacecraft element. BLEs are also key components of any micro-meteoroid/orbital debris (MMOD) risk assessment calculations. However, these …


Measuring Space Radiation Shielding Effectiveness, Amir Bahadori, Edward Semones, Michael Ewert, James Broyan, Steven Walker Jan 2017

Measuring Space Radiation Shielding Effectiveness, Amir Bahadori, Edward Semones, Michael Ewert, James Broyan, Steven Walker

Mathematics & Statistics Faculty Publications

Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat …


Enhanced Mechanical Properties Of Arb-Processed Aluminum Alloy 6061 Sheets By Subsequent Asymmetric Cryorolling And Ageing, Hai Liang Yu, Lihong Su, Cheng Lu, Anh Kiet Tieu, Hui Jun Li, Jintao Li, Ajit R. Godbole, Charlie Kong Jan 2016

Enhanced Mechanical Properties Of Arb-Processed Aluminum Alloy 6061 Sheets By Subsequent Asymmetric Cryorolling And Ageing, Hai Liang Yu, Lihong Su, Cheng Lu, Anh Kiet Tieu, Hui Jun Li, Jintao Li, Ajit R. Godbole, Charlie Kong

Faculty of Engineering and Information Sciences - Papers: Part A

Grain size and precipitations affect the strength and ductility of ultrafine-grained materials. In this study, aluminum alloy 6061 sheets were fabricated using the accumulative roll bonding (ARB) technique. The ARB-processed sheets were subsequently subjected to cryorolling and asymmetric cryorolling. The sheets were further aged at 100 °C for 48 h. Mechanical tests show that a combination of asymmetric cryorolling and ageing results in significant improvement in both the ductility and the strength of the ARB-processed sheets. The microstructures of the sheets at different stages of the process were also analyzed using optical microscopy, scanning electron microscopy, transmission electron microscopy and …


Distinction In Corrosion Resistance Of Selective Laser Melted Ti-6al-4v Alloy On Different Planes, Nianwei Dai, Laichang Zhang, Junxi Zhang, Xin Zhang, Qingzhao Ni, Yang Chen Jan 2016

Distinction In Corrosion Resistance Of Selective Laser Melted Ti-6al-4v Alloy On Different Planes, Nianwei Dai, Laichang Zhang, Junxi Zhang, Xin Zhang, Qingzhao Ni, Yang Chen

Research outputs 2014 to 2021

Electrochemical measurements and microstructural analysis were performed to study the corrosion resistance of different planes of Ti-6Al-4V alloy manufactured by selective laser melting (SLM). The electrochemical results suggest that its XY-plane possesses a better corrosion resistance compared to XZ-plane in 1 M HCl solution, in spite of slight difference in 3.5 wt.% NaCl solution, suggesting that the different planes exhibit more pronounced distinction in corrosion resistance in harsher solution system. The inferior corrosion resistance of XZ-plane is attributed to the presence of more α′ martensite and less β-Ti phase in microstructure for XZ-plane than for XY-plane of the SLM-produced Ti-6Al-4V …


Mechanical Properties And Tribological Behavior Of Aluminum Matrix Composites Reinforced With In-Situ Alb2 Particles, Linlin Yuan, Jingtao Han, Jing Liu, Zhengyi Jiang Jan 2016

Mechanical Properties And Tribological Behavior Of Aluminum Matrix Composites Reinforced With In-Situ Alb2 Particles, Linlin Yuan, Jingtao Han, Jing Liu, Zhengyi Jiang

Faculty of Engineering and Information Sciences - Papers: Part A

Aluminum matrix composites (AMCs) reinforced with in-situ AlB2 particles have been fabricated using a combination of powder metallurgy, hot rolling and solution treatment. The effects of boron content (7 and 12 wt%), hot rolling and heat treatment parameters on the microstructures and mechanical properties of the composites were investigated by means of scanning electron microscopy (SEM), tensile test and micro-hardness measurements. The friction coefficient, wear behavior and scratch morphology of the AMCs and pure aluminum were also studied using scratch tests. The hardness and wear properties are higher in a case of composites when compared to unreinforced matrix material.


Processing Of Al-12si-Tnm Composites By Selective Laser Melting And Evaluation Of Compressive And Wear Properties, Konda Prashanth, Sergio Scudino, Anil Chaubey, Lukas Löber, Pei Wang, Hooyar Attar, Frank Schimansky, Florian Pyczak, Jürgen Eckert Jan 2016

Processing Of Al-12si-Tnm Composites By Selective Laser Melting And Evaluation Of Compressive And Wear Properties, Konda Prashanth, Sergio Scudino, Anil Chaubey, Lukas Löber, Pei Wang, Hooyar Attar, Frank Schimansky, Florian Pyczak, Jürgen Eckert

Research outputs 2014 to 2021

Al-12Si (80 vol%)-Ti52.4Al42.2Nb4.4Mo0.9B0.06 (at.%) (TNM) composites were successfully produced by the selective laser melting (SLM). Detailed structural and microstructural analysis shows the formation of the Al6MoTi intermetallic phase due to the reaction of the TNM reinforcement with the Al-12Si matrix during SLM. Compression tests reveal that the composites exhibit significantly improved properties (∼140 and ∼160 MPa higher yield and ultimate compressive strengths, respectively) compared with the Al-12Si matrix. However, the samples break at ∼6% total strain under compression, thus showing a reduced plasticity of the composites. Sliding wear tests were carried out for both the Al-12Si matrix and the Al-12Si-TNM …


Inter-Laboratory Variation In The Chemical Analysis Of Acidic Forest Soil Reference Samples From Eastern North America, D. S. Ross, S. W. Bailey, R. D. Briggs, J. Curry, I. J. Fernandez, G. Fredriksen, C. L. Goodale, P. W. Hazlett, P. R. Heine, C. E. Johnson, J. T. Larson, G. B. Lawrence, R. K. Kolka, R. Ouimet, D. Paré, D. De B. Richter, C. D. Schirmer, R. A. Warby May 2015

Inter-Laboratory Variation In The Chemical Analysis Of Acidic Forest Soil Reference Samples From Eastern North America, D. S. Ross, S. W. Bailey, R. D. Briggs, J. Curry, I. J. Fernandez, G. Fredriksen, C. L. Goodale, P. W. Hazlett, P. R. Heine, C. E. Johnson, J. T. Larson, G. B. Lawrence, R. K. Kolka, R. Ouimet, D. Paré, D. De B. Richter, C. D. Schirmer, R. A. Warby

Civil and Environmental Engineering

Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two …


A Constitutive Model For Entangled Polymers Incorporating Binary Entanglement Pair Dynamics And A Configuration Dependent Friction Coefficient, David W. Mead, Nilanjana Banerjee, Joontaek Park Mar 2015

A Constitutive Model For Entangled Polymers Incorporating Binary Entanglement Pair Dynamics And A Configuration Dependent Friction Coefficient, David W. Mead, Nilanjana Banerjee, Joontaek Park

Chemical and Biochemical Engineering Faculty Research & Creative Works

Following recent work [e.g., J. Park et al., J. Rheol. 56, 1057-1082 (2012); T. Yaoita et al., Macromolecules 45, 2773-2782 (2012); and G. Ianniruberto et al., Macromolecules 45, 8058-8066 (2012)], we introduce the idea of a configuration dependent friction coefficient (CDFC) based on the relative orientation of Kuhn bonds of the test and surrounding matrix chains. We incorporate CDFC into the "toy" model of Mead et al. [Macromolecules 31, 7895-7914 (1998)] in a manner akin to Yaoita et al. [Nihon Reoroji Gakkaishi 42, 207-213 (2014)]. Additionally, we incorporate entanglement dynamics (ED) of discrete entanglement pairs into the new Mead-Banerjee-Park (MBP) …


Producing High Strength Aluminum Alloy By Combination Of Equal Channel Angular Pressing And Bake Hardening, Hamid Alihosseini, Mohsen Asle Zaeem, Kamran Dehghani, Ghader Faraji Feb 2015

Producing High Strength Aluminum Alloy By Combination Of Equal Channel Angular Pressing And Bake Hardening, Hamid Alihosseini, Mohsen Asle Zaeem, Kamran Dehghani, Ghader Faraji

Materials Science and Engineering Faculty Research & Creative Works

A combination of severe plastic deformation by equal channel angular pressing (ECAP) and bake hardening (BH) was used to produce high strength ultrafine-grained AA6061 aluminum alloy. 2, 4 and 8 passes of ECAP were performed, and the bake hardenability of samples was tested by 6% pre-straining followed by baking at 200 °C for 20 min. The microstructures obtained for various passes of ECAP were characterized by XRD, EBSD, and TEM techniques. The microstructures were refined from an average grain size of 20 µm to 212 nm after 8 passes of ECAP. Maximum bake hardenability of 110 MPa, and final yield …


Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali Jan 2015

Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali

Applied Research Center Publications

Cu (In,Ga,Al)Se2 (CIGAS) thin films were studied as an alternative absorber layer material to Cu(InxGa1-x)Se2. CIGAS thin films with varying Al content were prepared by magnetron sputtering on Si(100) and soda-lime glass substrates at 350 °C, followed by postdeposition annealing at 520 °C for 5 h in vacuum. The film composition was measured by an electron probe microanalyzer while the elemental depth profiles were determined by secondary ion mass spectrometry. X-ray diffraction studies indicated that CIGAS films are single phase with chalcopyrite structure and that the (112) peak clearly shifts to higher 2θ …


A Combined Experimental-Numerical Approach For Determining Mechanical Properties Of Aluminum Subjects To Nanoindentation, Mao Liu, Cheng Lu, A Kiet Tieu, Ching-Tun Peng, Charlie Kong Jan 2015

A Combined Experimental-Numerical Approach For Determining Mechanical Properties Of Aluminum Subjects To Nanoindentation, Mao Liu, Cheng Lu, A Kiet Tieu, Ching-Tun Peng, Charlie Kong

Faculty of Engineering and Information Sciences - Papers: Part A

A crystal plasticity finite element method (CPFEM) model has been developed to investigate the mechanical properties and micro-texture evolution of single-crystal aluminum induced by a sharp Berkovich indenter. The load-displacement curves, pile-up patterns and lattice rotation angles from simulation are consistent with the experimental results. The pile-up phenomenon and lattice rotation have been discussed based on the theory of crystal plasticity. In addition, a polycrystal tensile CPFEM model has been established to explore the relationship between indentation hardness and yield stress. The elastic constraint factor C is slightly larger than conventional value 3 due to the strain hardening.


The Sky Is Falling Ii: Impact Of Deposition Produced During The Static Testing Of Solid Rocket Motors On Corn And Alfalfa, William J. Doucette, Scout Mendenhall, Laurie S. Mcneill, Justin Heavilin Jan 2014

The Sky Is Falling Ii: Impact Of Deposition Produced During The Static Testing Of Solid Rocket Motors On Corn And Alfalfa, William J. Doucette, Scout Mendenhall, Laurie S. Mcneill, Justin Heavilin

Reports

Tests of horizontally restrained rocket motors at the ATK facility in Promontory, Utah,USA result in the deposition of an estimated 1.5 million kg of entrained soil and combustion products (mainly aluminum oxide, gaseous hydrogen chloride and water) on the surrounding area. The deposition is referred to as test fire soil (TFS). Farmers observing TFS deposited on their crops expressed concerns regarding the impact of this material. To address these concerns, we exposed corn and alfalfa to TFS collected during a September 2009 test. The impact was evaluated by comparing the growth and tissue composition of controls relative to the treatments. …


Tensile Fracture Of Ultrafine Grained Aluminum 6061 Sheets By Asymmetric Cryorolling For Microforming, Hailiang Yu, A Kiet Tieu, Cheng Lu, Yanshan Lou, Xianghua Liu, Ajit R. Godbole, Charlie Kong Jan 2014

Tensile Fracture Of Ultrafine Grained Aluminum 6061 Sheets By Asymmetric Cryorolling For Microforming, Hailiang Yu, A Kiet Tieu, Cheng Lu, Yanshan Lou, Xianghua Liu, Ajit R. Godbole, Charlie Kong

Faculty of Engineering and Information Sciences - Papers: Part A

The size effect on the mechanism of fracture in ultrafine grained sheets is an unsolved problem in microforming. This paper describes a tensile test carried out to study the fracture behavior and the shear fracture angles of both rolled and aged ultrafine grained aluminum 6061 sheets produced by asymmetric cryorolling. A scanning electron microscope was used to observe the fracture surface. The finite element method was used to simulate the tensile test using the uncoupled Cockcroft-Latham and Tresca criteria and the coupled Gurson-Tvergaard-Needleman damage criterion. It was found that the shear fracture angle decreases gradually from 90 degrees to 64 …


Hardness-Tensile Property Relationships For Haz In 6061-T651 Aluminum, P A. Stathers, Alan K. Hellier, R P. Harrison, M I. Ripley, John Norrish Jan 2014

Hardness-Tensile Property Relationships For Haz In 6061-T651 Aluminum, P A. Stathers, Alan K. Hellier, R P. Harrison, M I. Ripley, John Norrish

Faculty of Engineering and Information Sciences - Papers: Part A

High-strength aluminum is used extensively in industry, with welding being a widely used fabrication method. This work focuses on welding of 6061-T651 aluminum and establishment of the hardness-tensile properties relationship in the heat-affected zone (HAZ) of a gas metal arc weld using 4043 filler material. Test welds were prepared from 12.7-mm-thick plate with a single-V weld preparation. Base plate temperatures were measured with an array of eight embedded thermocouples during welding, relating temperature to properties at intervals from the weld. Through-thickness slices 1.7 mm thick were removed, by electric discharge machining, from the plate parallel to the weld at 2-mm …


Microtexture Based Analysis Of Surface Asperity Flattening Behavior Of Annealed Aluminum Alloy In Uniaxial Planar Compression, Hejie Li, Zhengyi Jiang, Dongbin Wei, Xiaoming Zhang Jan 2013

Microtexture Based Analysis Of Surface Asperity Flattening Behavior Of Annealed Aluminum Alloy In Uniaxial Planar Compression, Hejie Li, Zhengyi Jiang, Dongbin Wei, Xiaoming Zhang

Faculty of Engineering and Information Sciences - Papers: Part A

During the uniaxial planar compression of annealed aluminum alloy, a novel approach to determine surface asperity flattening (roughness Ra) is employed by analyzing the evolution of surface microtexture. With an increase in gauged reduction, surface asperity tends to be flattened, and strain hardening increases. Lubrication can constrain the surface asperity flattening process. Development of surface asperity features shows the obvious dependency on [111] orientation. In-grain slips contribute significantly to the evolution of surface microtexture. Influence of deformation twins (brass orientation) on the evolution of microtexture is not obvious under our current experimental conditions.


Review Of Corrosion Aspects Of Compression Ignition Engine Parts Using Biodiesel Blends, B. Singh, John Korstad, Y. C. Sharma Jun 2012

Review Of Corrosion Aspects Of Compression Ignition Engine Parts Using Biodiesel Blends, B. Singh, John Korstad, Y. C. Sharma

College of Science and Engineering Faculty Research and Scholarship

This paper reviews the effects of corrosion on the engine parts that come in contact with a newly developed biodiesel fuel and its petrodiesel blend. Copper, aluminum, copper alloys (bronze), and elastomers caused significant levels of corrosiveness in biodiesel and biodiesel blend as opposed to low corrosion with petrodiesel. Specimens of stainless steel showed significant resistance to corrosion in biodiesel samples as compared to copper, aluminum, and copper alloys, but the level of corrosion was still higher than that in petrodiesel. Common methods adopted for measurement of corrosion include weight loss through static emersion tests, and electrochemical techniques by electrochemical …


Resonance Frequencies Of A Spherical Aluminum Shell Subject To Static Internal Pressure, Andrew A. Piacsek, Sami Abdul-Wahid, Robert Taylor May 2012

Resonance Frequencies Of A Spherical Aluminum Shell Subject To Static Internal Pressure, Andrew A. Piacsek, Sami Abdul-Wahid, Robert Taylor

All Faculty Scholarship for the College of the Sciences

Measurements of the vibrational response of a spherical aluminum shell subject to changes in the interior pressure clearly demonstrate that resonance frequencies shift higher as the pressure is increased. The frequency shift appears to be smaller for longitudinal modes than for bending wave modes. The magnitude of frequency shift is comparable to analytical predictions made for thin cylindrical shells. Changes in the amplitudes of resonance peaks are also observed. A possible application of this result is a method for noninvasively monitoring pressure changes inside sealed containers, including intracranial pressure in humans.