Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 36 of 36

Full-Text Articles in Engineering

Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day Aug 2010

Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day

Materials Science and Engineering Faculty Research & Creative Works

There is an increasing demand for synthetic scaffolds with the requisite biocompatibility, internal architecture, and mechanical properties for the bone repair and regeneration. In this work, scaffolds of a silicate bioactive glass (13-93) were prepared by a freeze extrusion fabrication (FEF) method and evaluated in vitro for potential applications in bone repair and regeneration. The process parameters for FEF production of scaffolds with the requisite microstructural characteristics, as well as the mechanical and cell culture response of the scaffolds were evaluated. After binder burnout and sintering (60 min at 700°C), the scaffolds consisted of a dense glass network with interpenetrating …


Functionally Graded Materials By Laser Metal Deposition (Preprint), Syamala R. Pulugurtha, Joseph William Newkirk, Frank W. Liou, Hsin-Nan Chou Mar 2010

Functionally Graded Materials By Laser Metal Deposition (Preprint), Syamala R. Pulugurtha, Joseph William Newkirk, Frank W. Liou, Hsin-Nan Chou

Materials Science and Engineering Faculty Research & Creative Works

Fabrication of functionally graded materials (FGMs) by laser metal deposition (LMD) has the potential to offer solutions to key engineering problems over the traditional metalworking techniques. But the issues that need to be addressed while building FGMs are intermixing in the layers and cracking due to the residual stresses. This paper is to present the study of the effect of process parameters (laser power and travel speed) on the degree of dilution between the substrate (or, previous layer) and powder material for few metallurgical systems.


Functionally Graded Materials By Laser Metal Deposition, Syamala Rani Pulugurtha, Joseph William Newkirk, Frank W. Liou, Hsin-Nan Chou Aug 2009

Functionally Graded Materials By Laser Metal Deposition, Syamala Rani Pulugurtha, Joseph William Newkirk, Frank W. Liou, Hsin-Nan Chou

Materials Science and Engineering Faculty Research & Creative Works

Fabrication of functionally graded materials (FGMs) by laser metal deposition (LMD) has the potential to offer solutions to key engineering problems over the traditional metal-working techniques. But the issues that need to be addressed while building FGMs are intermixing in the layers and cracking due to the residual stresses. This paper is to present the study of the effect of process parameters (laser power and travel speed) on the degree of dilution between the substrate (or, previous layer) and powder material for few metallurgical systems.


Freeze-Spray Processing Of Layered Ceramic Composites, Qiang Fu, Oratai Jongprateep, Ashlee Abbott, Fatih Dogan Aug 2006

Freeze-Spray Processing Of Layered Ceramic Composites, Qiang Fu, Oratai Jongprateep, Ashlee Abbott, Fatih Dogan

Materials Science and Engineering Faculty Research & Creative Works

Thermal gradients and associated stresses are critical in designing with ceramic composites having low thermal conductivity. In order to reduce the stresses from thermal gradients, compositional gradients are employed in designing of composite structures. This study addresses development of freeze-spray process to fabricate layered ceramic structures with controlled layer thickness and microstructural development. The composites were processed by spraying of ceramic slurries with low binder content and relatively high solids loadings (up to 40 vol%) on a cooled substrate. The frozen parts were freeze-dried and sintered at elevated temperatures. The relationship between microstructural development and thermal expansion behavior of Al …


Freeze-Form Extrusion Fabrication Of Ceramics, Tieshu Huang, Michael S. Mason, Greg Hilmas, Ming-Chuan Leu Aug 2005

Freeze-Form Extrusion Fabrication Of Ceramics, Tieshu Huang, Michael S. Mason, Greg Hilmas, Ming-Chuan Leu

Materials Science and Engineering Faculty Research & Creative Works

A novel, environmentally friendly solid freeform fabrication method called Freeze-form Extrusion Fabrication (FEF) has been developed for the fabrication of ceramic-based components. The method is based on deposition of ceramic pastes using water as the media. The ceramic solids loading can be 50 vol. % or higher and initial studies have focused on the use of aluminum oxide (Al2O3). The FEF system components and their interaction are examined, and the main process parameters affecting part geometry defined. 3-D shaped components have been fabricated by extrusion deposition of the ceramic paste in a layer-by-layer fashion. The feasibility …


Recent Developments In Extrusion Freeform Fabrication (Eff) Utilizing Non-Aqueous Gel Casting Formulations, Greg Hilmas, John L. Lombardi, Robert A. Hoffman, Kevin Stuffle Aug 1996

Recent Developments In Extrusion Freeform Fabrication (Eff) Utilizing Non-Aqueous Gel Casting Formulations, Greg Hilmas, John L. Lombardi, Robert A. Hoffman, Kevin Stuffle

Materials Science and Engineering Faculty Research & Creative Works

Extrusion Freeform Fabrication (EFF) was shown to be an extremely versatile method for fabricating Functionally Graded Materials (FGMs) The approach is inexpensive and potentially feasible for grading between any thermodynamically compatible ceramic-metal, ceramic-ceramic, or metal-metal material combination. Several material systems were investigated in this study including alumina-304 stainless steel, zirconia-304 stainless steel, alumina-Inconel 625, zirconiaInconel625, alumina-nickel aluminide, zirconia-nickel aluminide, titanium carbide-InconeI625, titanium diboride-nickel aluminide, and tungsten carbide-nickel aluminide. A controlled gradient was demonstrated between the end members for all of the above compositions. The FGMs were hot pressed to achieve near theoretical densities, providing flexural strengths as high as 1000 …