Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Series

2021

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 170

Full-Text Articles in Engineering

Milling Of Inconel 718: An Experimental And Integrated Modeling Approach For Surface Roughness, Sadaf Zahoor, Adeel Shehzad, Muhammad Salman Habib Dec 2021

Milling Of Inconel 718: An Experimental And Integrated Modeling Approach For Surface Roughness, Sadaf Zahoor, Adeel Shehzad, Muhammad Salman Habib

Mechanical, Automotive & Materials Engineering Publications

Inconel 718, a hard-to-cut superalloy is reputed for having poor machining performance due to its low thermal conductivity. Consequently, the surface quality of the machined parts suffers. The surface roughness value must fall within the stringent limits to ensure the functional performance of the components used in aerospace and bioimplant applications. One doable way to enhance its machinability is the adequate dissipation of heat from the machining zone through efficient and ecofriendly cooling environment. With this perspective, an experimental and integrated green-response surface machiningbased- evolutionary optimization (G-RSM-EO) approach is presented during this investigation. The results are compared with two base-line …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


A Comparison Of Solid Electrolyte Interphase Formation And Evolution On Highly Oriented Pyrolytic And Disordered Graphite Negative Electrodes In Lithium-Ion Batteries, Haoyu Zhu, Joshua A. Russell, Zongtang Fang, Pete Barnes, Lan Li, Corey M. Efaw, Allison Muenzer, Jeremy May, Kailash Hamal, I. Francis Cheng, Paul H. Davis, Eric J. Dufek, Hui Xiong Dec 2021

A Comparison Of Solid Electrolyte Interphase Formation And Evolution On Highly Oriented Pyrolytic And Disordered Graphite Negative Electrodes In Lithium-Ion Batteries, Haoyu Zhu, Joshua A. Russell, Zongtang Fang, Pete Barnes, Lan Li, Corey M. Efaw, Allison Muenzer, Jeremy May, Kailash Hamal, I. Francis Cheng, Paul H. Davis, Eric J. Dufek, Hui Xiong

Materials Science and Engineering Faculty Publications and Presentations

The presence and stability of solid electrolyte interphase (SEI) on graphitic electrodes is vital to the performance of lithium-ion batteries (LIBs). However, the formation and evolution of SEI remain the least understood area in LIBs due to its dynamic nature, complexity in chemical composition, heterogeneity in morphology, as well as lack of reliable in situ/operando techniques for accurate characterization. In addition, chemical composition and morphology of SEI are not only affected by the choice of electrolyte, but also by the nature of the electrode surface. While introduction of defects into graphitic electrodes has promoted their electrochemical properties, how such structural …


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


The Effect Of Green Biobased Binder On Structural, Mechanical, Liquid Absorption And Wetting Properties Of Coated Papers, Bilge N. Altay, Charles Klass, Ting Chen, Alexandar Fleck, Cem Aydemir, Arif Karademir, Paul D. Fleming Dec 2021

The Effect Of Green Biobased Binder On Structural, Mechanical, Liquid Absorption And Wetting Properties Of Coated Papers, Bilge N. Altay, Charles Klass, Ting Chen, Alexandar Fleck, Cem Aydemir, Arif Karademir, Paul D. Fleming

Articles

Synthetic styrene-butadiene (SB) and styrene-acrylic (SA) latex binders used in paper coating formulations are common and based on unsustainable petroleum sources. Today's papermaking industry turns towards sustainable substitutes that do not compromise quality, and reduce carbon emission, toxic substance release and waste disposal concerns related to fossil fuel sources. In this study, colloidal starch-based latex nanoparticles that do not require cooking were used for pigment coating and coated on the paper surfaces. The effects of these new biobased binders on the structural and mechanical strength properties, liquid absorption, wetting and surface topography of the paper were investigated and compared with …


Tensile-Strained Self-Assembly Of Ingaas On Inas(111)A, Kevin D. Vallejo, Trent A. Garrett, Carlos I. Cabrera, Baolai Liang, Kevin A. Grossklaus, Paul J. Simmonds Dec 2021

Tensile-Strained Self-Assembly Of Ingaas On Inas(111)A, Kevin D. Vallejo, Trent A. Garrett, Carlos I. Cabrera, Baolai Liang, Kevin A. Grossklaus, Paul J. Simmonds

Materials Science and Engineering Faculty Publications and Presentations

We have determined a reproducible set of growth conditions for the self-assembly of tensile-strained In1-xGaxAs quantum dot (QD) nanostructures on (111)A surfaces. During molecular beam epitaxy, In1-xGaxAs islands form spontaneously on InAs(111)A when the Ga content x ≥ 50%. We analyze the structure and composition of InGaAs/InAs(111) samples using atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy. We demonstrate control over the size and areal density of the islands as a function of In1-xGaxAs coverage, In1-xGaxAs composition, …


Single-Walled Carbon Nanotubes Inhibit Trpc4-Mediated Muscarinic Cation Current In Mouse Ileal Myocytes, Lina T. Al Kury, Dimitrios Papandreou, Vasyl V. Hurmach, Dariia O. Dryn, Mariia I. Melnyk, Maxim O. Platonov, Yuriy I. Prylutskyy, Uwe Ritter, Peter Scharff, Alexander V. Zholos Dec 2021

Single-Walled Carbon Nanotubes Inhibit Trpc4-Mediated Muscarinic Cation Current In Mouse Ileal Myocytes, Lina T. Al Kury, Dimitrios Papandreou, Vasyl V. Hurmach, Dariia O. Dryn, Mariia I. Melnyk, Maxim O. Platonov, Yuriy I. Prylutskyy, Uwe Ritter, Peter Scharff, Alexander V. Zholos

All Works

Single-walled carbon nanotubes (SWCNTs) are characterized by a combination of rather unique physical and chemical properties, which makes them interesting biocompatible nanostruc-tured materials for various applications, including in the biomedical field. SWCNTs are not inert carriers of drug molecules, as they may interact with various biological macromolecules, including ion channels. To investigate the mechanisms of the inhibitory effects of SWCNTs on the muscarinic receptor cation current (mICAT), induced by intracellular GTPγs (200 µM), in isolated mouse ileal myocytes, we have used the patch-clamp method in the whole-cell configuration. Here, we use molecular docking/molecular dynamics simulations and direct patch-clamp recordings of …


Life Cycle Assessment Of Pasture-Based Agrivoltaic Systems: Emissions And Energy Use Of Integrated Rabbit Production, Alexis Pascaris, Robert Handler, Chelsea Schelly, Joshua Pearce Dec 2021

Life Cycle Assessment Of Pasture-Based Agrivoltaic Systems: Emissions And Energy Use Of Integrated Rabbit Production, Alexis Pascaris, Robert Handler, Chelsea Schelly, Joshua Pearce

Michigan Tech Publications

Agrivoltaic systems, which deliberately maximize the utility of a single parcel of land for both solar photovoltaic (PV) electricity production and agriculture, have been demonstrated as a viable technology that can ameliorate competing land uses and meet growing energy and food demands efficiently. The goal of this study is to assess the environmental impacts of a novel pasture-based agrivoltaic concept: co-farming rabbits and solar PV. A life cycle assessment (LCA) quantified the impacts of 1) the integrated agrivoltaic concept in comparison to conventional practices including 2) separate rabbit farming and PV production and 3) separate rabbit farming and conventional electricity …


Microstructural And Optical Properties Of Mgal2o4 Spinel: Effects Of Mechanical Activation, Y2o3 And Graphene Additions, Nina Obradovic, William Fahrenholtz, Cole Corlett, Suzana Filipovic, Marko Nikolic, Bojan A. Marinkovic, Simone Failla, Diletta Sciti, Daniele Di Rosa, Elisa Sani Dec 2021

Microstructural And Optical Properties Of Mgal2o4 Spinel: Effects Of Mechanical Activation, Y2o3 And Graphene Additions, Nina Obradovic, William Fahrenholtz, Cole Corlett, Suzana Filipovic, Marko Nikolic, Bojan A. Marinkovic, Simone Failla, Diletta Sciti, Daniele Di Rosa, Elisa Sani

Materials Science and Engineering Faculty Research & Creative Works

Magnesium Aluminate and Other Alumina-Based Spinels Attract Attention Due to their High Hardness, High Mechanical Strength, and Low Dielectric Constant. MgAl2O4 Was Produced by a Solid-State Reaction between MgO and Α-Al2O3 Powders. Mechanical Activation for 30 Min in a Planetary Ball Mill Was Used to Increase the Reactivity of Powders. Yttrium Oxide and Graphene Were Added to Prevent Abnormal Grain Growth during Sintering. Samples Were Sintered by Hot Pressing under Vacuum at 1450◦C. Phase Composition and Microstructure of Sintered Specimens Were Characterized by X-Ray Powder Diffraction and Scanning Electron Microscopy. Rietveld Analysis Revealed 100% …


Bioabsorbable Metal Zinc Differentially Affects Mitochondria In Vascular Endothelial And Smooth Muscle Cells, Olivia R. M. Bagshaw, Fereshteh Moradi, Christopher S. Moffatt, Hillary A. Hettwer, Ping Liang, Jeremy Goldman, Jaroslaw Drelich, Jeffrey A. Stuart Dec 2021

Bioabsorbable Metal Zinc Differentially Affects Mitochondria In Vascular Endothelial And Smooth Muscle Cells, Olivia R. M. Bagshaw, Fereshteh Moradi, Christopher S. Moffatt, Hillary A. Hettwer, Ping Liang, Jeremy Goldman, Jaroslaw Drelich, Jeffrey A. Stuart

Michigan Tech Publications

Zinc is an essential trace element having various structural, catalytic and regulatory interactions with an estimated 3000 proteins. Zinc has drawn recent attention for its use, both as pure metal and alloyed, in arterial stents due to its biodegradability, biocompatibility, and low corrosion rates. Previous studies have demonstrated that zinc metal implants prevent the development of neointimal hyperplasia, which is a common cause of restenosis following coronary intervention. This suppression appears to be smooth muscle cell-specific, as reendothelization of the neointima is not inhibited. To better understand the basis of zinc's differential effects on rat aortic smooth muscle (RASMC) versus …


Anisotropy In Impact Toughness Of Powder Bed Fused Aisi 304l Stainless Steel, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk Dec 2021

Anisotropy In Impact Toughness Of Powder Bed Fused Aisi 304l Stainless Steel, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The current effort involved investigation into the anisotropy of AISI 304L fabricated through laser powder bed fusion. Charpy V‐notch specimens made from material fabricated at three different build orientations were tested and analyzed. A statistically significant difference among the toughness values indicates the presence of anisotropy within the additively manufactured material. While the lowest toughness was found in vertically built specimens, the horizontal specimens were found to exhibit the highest toughness. From the fracture surfaces, an atypical mode of failure was observed. Exclusive crack propagation along the interlayer track boundaries was observed. The toughness variation correlated with the ease of …


Dechlorination Apparatus For Treating Chloride Salt Wastes: System Evaluation And Scale-Up, Brian J. Riley, Saehwa Chong, Charmayne E. Lonergan Nov 2021

Dechlorination Apparatus For Treating Chloride Salt Wastes: System Evaluation And Scale-Up, Brian J. Riley, Saehwa Chong, Charmayne E. Lonergan

Materials Science and Engineering Faculty Research & Creative Works

This paper describes an apparatus used to remove chlorine from chloride salt-based nuclear wastes from electrochemical reprocessing and/or chloride-based molten salt reactors (MSRs) through dechlorination by reacting the salts with ammonium dihydrogen phosphate (NH4H2PO4 or ADP) at temperatures up to 600 °C to produce NH4Cl as a byproduct. The benefits of removing the Cl from these salts include 37Cl recovery from Cl-based MSR salts, formation of UCl3 from the NH4Cl, as well as removal of Cl from the salts and conversion of the salt cations to oxides to allow …


Stochastic Lightning Damage Prediction Of Carbon/Epoxy Composites With Material Uncertainties, S.Z.H. Shah, Juhyeong Lee Nov 2021

Stochastic Lightning Damage Prediction Of Carbon/Epoxy Composites With Material Uncertainties, S.Z.H. Shah, Juhyeong Lee

Mechanical and Aerospace Engineering Faculty Publications

This study presents a novel stochastic modeling framework predicting lightning thermal damage in carbon/epoxy composites. The stochastic lightning damage model (SLDM) was developed with random distributions of composite’s electrical conductivity and void. The Box-Muller transformation was applied to generate random in-plane and through-thickness electrical conductivities with Gaussian distributions. The SLDM suggested that the predicted lightning thermal damage to carbon/epoxy composites increased slightly with the use of stochastic electrical conductivity, but the presence of voids did not significantly affect the damage development. The predicted size and shape of lightning thermal damage agreed fairly well with experimental results. In addition, the proposed …


Spatial And Temporal Analysis Of Sodium-Ion Batteries, Dewen Hou, Eric Gabriel, Joshua A. Russell, Kincaid Graff, Hui Xiong Nov 2021

Spatial And Temporal Analysis Of Sodium-Ion Batteries, Dewen Hou, Eric Gabriel, Joshua A. Russell, Kincaid Graff, Hui Xiong

Materials Science and Engineering Faculty Publications and Presentations

As a promising alternative to the market-leading lithium-ion batteries, low-cost sodium-ion batteries (SIBs) are attractive for applications such as large-scale electrical energy storage systems. The energy density, cycling life, and rate performance of SIBs are fundamentally dependent on dynamic physiochemical reactions, structural change, and morphological evolution. Therefore, it is essential to holistically understand SIBs reaction processes, degradation mechanisms, and thermal/mechanical behaviors in complex working environments. The recent developments of advanced in situ and operando characterization enable the establishment of the structure–processing–property–performance relationship in SIBs under operating conditions. This Review summarizes significant recent progress in SIBs exploiting in situ and operando …


Degradation Issues And Stabilization Strategies Of Protonic Ceramic Electrolysis Cells For Steam Electrolysis, Hanrui Su, Yun Hang Hu Nov 2021

Degradation Issues And Stabilization Strategies Of Protonic Ceramic Electrolysis Cells For Steam Electrolysis, Hanrui Su, Yun Hang Hu

Michigan Tech Publications

Protonic ceramic electrolysis cells (PCECs) are attractive electrochemical de-vices for converting electrical energy to chemicals due to their high conversion efficiency, favorable thermodynamics, fast kinetics, and inexpensive materials. Compared with conventional oxygen ion- conducting solid oxide electrolysis cells, PCECs operate at a lower operating temperature and a favorable operation mode, thus expecting high durability. However, the degradation of PCECs is still significant, hampering their development. In this review, the typical degradations of PCECs are summarized, with emphasis on the chemical stability of the electrolytes and the air electrode materials. Moreover, the degradation mechanism and influencing factors are assessed deeply. Finally, …


The Corrosion Inhibition Behavior Of Thermally Aged Chromate Conversion Coating Applied To Aerospace Aluminum 2219, Michelle Stephane Pierre Nov 2021

The Corrosion Inhibition Behavior Of Thermally Aged Chromate Conversion Coating Applied To Aerospace Aluminum 2219, Michelle Stephane Pierre

FIU Electronic Theses and Dissertations

NASA Kennedy Space Center’s technical standard for corrosion protection of space flight hardware provides guidance concerning temperature restrictions and exposure limits for processing unpainted chromate conversion coatings (CCC) for the Orion crew space vehicle as part of the Artemis program. The standard requires that all CCC treated flight hardware components be fully coated within seven days with a maximum storage time of seven days at ambient temperatures (much less time at higher temperatures). Currently, there is no literature nor qualified industry testing supporting the exposure limits set by the standard. The standard is quite restrictive to processing flight components. In …


Improvised Centrifugal Spinning For The Production Of Polystyrene Microfibers From Waste Expanded Polystyrene Foam And Its Potential Application For Oil Adsorption, Marco Laurence M. Budlayan, Jonathan N. Patricio, Jeanne Phyre B. Lagare, Susan D. Arco, Arnold C. Alguno, Antonio M. Basilio, Felmer S. Latayada, Rey Y. Capangpangan Nov 2021

Improvised Centrifugal Spinning For The Production Of Polystyrene Microfibers From Waste Expanded Polystyrene Foam And Its Potential Application For Oil Adsorption, Marco Laurence M. Budlayan, Jonathan N. Patricio, Jeanne Phyre B. Lagare, Susan D. Arco, Arnold C. Alguno, Antonio M. Basilio, Felmer S. Latayada, Rey Y. Capangpangan

Physics Faculty Publications

A straightforward approach to recycle waste expanded polystyrene (EPS) foam to produce polystyrene (PS) microfibers using the improvised centrifugal spinning technique is demonstrated in this work. A typical benchtop centrifuge was improvised and used as a centrifugal spinning device. The obtained PS microfibers were characterized for their potential application for oil adsorption. Fourier transform infrared spectroscopy results revealed similarity on the transmission bands of EPS foam and PS microfibers suggesting the preservation of the EPS foam’s chemical composition after the centrifugal spinning process. Scanning electron microscopy displayed well-defined fibers with an average diameter of 3.14 ± 0.59 μm. At the …


Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton Nov 2021

Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton

Faculty Publications

Barium gallium selenide (BaGa4Se7) is a recently developed nonlinear optical material with a transmission window extending from 470 nm to 17 μm. A primary application of these crystals is the production of tunable mid-infrared laser beams via optical parametric oscillation. Unintentional point defects, such as selenium vacancies, cation vacancies (barium and/or gallium), and trace amounts of transition-metal ions, are present in BaGa4Se7 crystals and may adversely affect device performance. Electron paramagnetic resonance (EPR) and optical absorption are used to identify and characterize these defects. Five distinct EPR spectra, each representing an electron …


Entrepreneurially Minded Learning In The Unit Operations Laboratory Through Community Engagement In A Blended Teaching Environment, Erick S. Vasquez, Kelly Bohrer, Abraham Noe-Hays, Arthur Davis, Matthew Dewitt, Michael J. Elsass Nov 2021

Entrepreneurially Minded Learning In The Unit Operations Laboratory Through Community Engagement In A Blended Teaching Environment, Erick S. Vasquez, Kelly Bohrer, Abraham Noe-Hays, Arthur Davis, Matthew Dewitt, Michael J. Elsass

Chemical and Materials Engineering Faculty Publications

Online and blended learning opportunities in Chemical Engineering curriculum emerged due to COVID-19. After eight weeks of in-person Unit Operations Laboratory sessions, a remote-learning open-ended final project was assigned to student teams. The assignment involved aspects related to entrepreneurial-minded learning (EML) and community-based learning (CBL). Results show correlations between self-directed learning and the EML framework. Continuous support and involvement of a community partner correlate to students' m


Experimental Heat Transfer Investigations Of A Double Pipe U-Tube Heat Exchanger Equipped With Twisted Tape And Cut Twisted Tape Internals, Raj Kumar Nayak Maloth, Glen Cletus Dsouza, Swarna Mayee Patra Nov 2021

Experimental Heat Transfer Investigations Of A Double Pipe U-Tube Heat Exchanger Equipped With Twisted Tape And Cut Twisted Tape Internals, Raj Kumar Nayak Maloth, Glen Cletus Dsouza, Swarna Mayee Patra

Mechanical and Materials Engineering Publications

For several decades, the use of heat exchangers for both heating and cooling applications has been established in industries ranging from process to space heating. Out of the various types of heat exchangers, U-tube heat exchangers are preferred owing to their abilities to handle larger flowrates and their simplicity in construction. U-tube exchangers are often equipped with innards of various forms which facilitate higher heat transfer rates and thermal efficiencies. Although higher heat transfer rates have been established with the addition of internals, there is a lack of coherence on the underlying complex physical phenomena such as heat transfer boundary …


Additive Manufacturing Of Miniaturized Peak Temperature Monitors For In-Pile Applications, Kiyo T. Fujimoto, Yaqiao Wu, David Estrada Nov 2021

Additive Manufacturing Of Miniaturized Peak Temperature Monitors For In-Pile Applications, Kiyo T. Fujimoto, Yaqiao Wu, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Passive monitoring techniques have been used for peak temperature measurements during irradiation tests by exploiting the melting point of well-characterized materials. Recent efforts to expand the capabilities of such peak temperature detection instrumentation include the development and testing of additively manufactured (AM) melt wires. In an effort to demonstrate and benchmark the performance and reliability of AM melt wires, we conducted a study to compare prototypical standard melt wires to an AM melt wire capsule, composed of printed aluminum, zinc, and tin melt wires. The lowest melting-point material used was Sn, with a melting point of approximately 230 °C, Zn …


Decarbonizing Rural Residential Buildings In Cold Climates: A Techno-Economic Analysis Of Heating Electrification, Filippo Padovani, Nelson Sommerfeldt, Francesca Longobardi, Joshua M. Pearce Nov 2021

Decarbonizing Rural Residential Buildings In Cold Climates: A Techno-Economic Analysis Of Heating Electrification, Filippo Padovani, Nelson Sommerfeldt, Francesca Longobardi, Joshua M. Pearce

Michigan Tech Publications

Given the need for decarbonization of the heating sector and the acute need of a propane replacement in the U.S. Upper Midwest, this study quantifies the techno-economic characteristics of sustainable heating electrification in isolated rural, residential buildings in cold climates without natural gas supply. Archetypal buildings are modeled under four levels of electrification. At each electrification level, a parametric solar photovoltaic (PV) sizing analysis is performed and the total life cycle cost, renewable fraction and greenhouse gas (GHG) emissions are calculated based on the primary energy supply for each building type. Cost optimal solutions are stress-tested with multi-dimensional sensitivity analyses. …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Electrospinning Processing Techniques For The Manufacturing Of Composite Dielectric Elastomer Fibers, Rani Elhajjar Oct 2021

Electrospinning Processing Techniques For The Manufacturing Of Composite Dielectric Elastomer Fibers, Rani Elhajjar

Civil and Environmental Engineering Faculty Articles

Dielectric elastomers (DE) are novel composite architectures capable of large actuation strains and the ability to be formed into a variety of actuator configurations. However, the high voltage requirement of DE actuators limits their applications for a variety of applications. Fiber actuators composed of DE fibers are particularly attractive as they can be formed into artificial muscle architectures. The interest in manufacturing micro or nanoscale DE fibers is increasing due to the possible applications in tissue engineering, filtration, drug delivery, catalysis, protective textiles, and sensors. Drawing, self-assembly, template-direct synthesis, and electrospinning processing have been explored to manufacture these fibers. Electrospinning …


Research And Applications Of Artificial Neural Network In Pavement Engineering: A State-Of-The-Art Review, Xu Yang, Jinchao Guan, Ling Ding, Zhanping You, Vincent C.S. Lee, Mohd Rosli Mohd Hasan, Xiaoyun Cheng Oct 2021

Research And Applications Of Artificial Neural Network In Pavement Engineering: A State-Of-The-Art Review, Xu Yang, Jinchao Guan, Ling Ding, Zhanping You, Vincent C.S. Lee, Mohd Rosli Mohd Hasan, Xiaoyun Cheng

Michigan Tech Publications

Given the great advancements in soft computing and data science, artificial neural network (ANN) has been explored and applied to handle complicated problems in the field of pavement engineering. This study conducted a state-of-the-art review for surveying the recent progress of ANN application at different stages of pavement engineering, including pavement design, construction, inspection and monitoring, and maintenance. This study focused on the papers published over the last three decades, especially the studies conducted since 2013. Through literature retrieval, a total of 683 papers in this field were identified, among which 143 papers were selected for an in-depth review. The …


Synergistic Anticancer Response Of Curcumin And Piperine Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against Glioblastoma Multiforme, Xinyi Zhao, Bilal Javad, Daxing Cui, James Curtin, Furong Tian Oct 2021

Synergistic Anticancer Response Of Curcumin And Piperine Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against Glioblastoma Multiforme, Xinyi Zhao, Bilal Javad, Daxing Cui, James Curtin, Furong Tian

Articles

Glioblastoma multiforme (GBM) is the most aggressive and commonly diag- 11 nosed brain cancer and presents a strong resistance to routine chemotherapeutic drugs. 12 The present study involves the synthesis of Lignin-g- p (NIPAM-co-DMAEMA) gold 13 nanogel, loaded with curcumin and piperine to treat GBM. The application has three 14 functions: (1) overcome the limitations of biodistribution, (2) enhance the toxicity of an- 15 ticancer drugs against GBM, (3) identify the uptake pathway. Atom transfer radical 16 polymerization was used to synthesize the Lignin-g-PNIPAM network, crosslinked with 17 the gold nanoparticles (GNPs) to self-assemble into nanogels. The size distribution and …


Customizable Aptamer Transducer Network Designed For Feed-Forward Coupling, Tim Hachigian, Drew Lysne, Elton Graugnard, Jeunghoon Lee Oct 2021

Customizable Aptamer Transducer Network Designed For Feed-Forward Coupling, Tim Hachigian, Drew Lysne, Elton Graugnard, Jeunghoon Lee

Materials Science and Engineering Faculty Publications and Presentations

Solution-based biosensors that utilize aptamers have been engineered in a variety of formats to detect a range of analytes for both medical and environmental applications. However, since aptamers have fixed base sequences, incorporation of aptamers into DNA strand displacement networks for feed-forward signal amplification and processing requires significant redesign of downstream DNA reaction networks. We designed a novel aptamer transduction network that releases customizable output domains, which can then be used to initiate downstream strand displacement reaction networks without any sequence redesign of the downstream reaction networks. In our aptamer transducer (AT), aptamer input domains are independent of output domains …


Growth Ring Orientation Effects In Transverse Softwood Fracture, Parinaz Belalpour Dastjerdi, Eric N. Landis Oct 2021

Growth Ring Orientation Effects In Transverse Softwood Fracture, Parinaz Belalpour Dastjerdi, Eric N. Landis

Civil Engineering Faculty Scholarship

In this study, the fracture mechanics of eastern spruce were characterized in relation to end-grain orientation. Compact tension-type specimens with small pre-formed cracks were prepared such that grain angle varied relative to the load axis. Specimens were loaded under crack mouth opening displacement (CMOD) control as to maintain stable crack growth. Specimen fracture was characterized using both R-curve and bulk fracture energy approaches. The results showed that under a RT grain orientation, as well as grain deviations up to about 40, cracks will follow a path of least resistance in an earlywood region. As the grain angle exceeds …


Perovskite Film Formation For Solar Cell Absorbers: Effects Of Substrate Modification, Mirra M. Rasmussen, Kyle M. Crowley, Ina T. Martin Oct 2021

Perovskite Film Formation For Solar Cell Absorbers: Effects Of Substrate Modification, Mirra M. Rasmussen, Kyle M. Crowley, Ina T. Martin

Student Scholarship

As perovskite solar cell efficiencies have risen rapidly, practical constraints have made durability a critical concern. Whereas much attention has been paid to the development of the perovskite absorber layer, the charge transport layers can also be engineered to better the performance and stability of the device. This work uses the molecular modifier bromopropyltrimethoxysilane (BPTMS) to alter the interface between indium tin oxide (ITO, a common thin film solar cell transparent electrode) and methylammonium lead iodide (MAPbI3, a common perovskite absorber) to improve the morphology and stability of the perovskite absorber film. The substrate, molecular modifier, and perovskite film were …


Machine Learning For High-Fidelity Prediction Of Cement Hydration Kinetics In Blended Systems, Rachel Cook, Taihao Han, Alaina Childers, Cambria Ryckman, Kamal Khayat, Hongyan Ma, Jie Huang, Aditya Kumar Oct 2021

Machine Learning For High-Fidelity Prediction Of Cement Hydration Kinetics In Blended Systems, Rachel Cook, Taihao Han, Alaina Childers, Cambria Ryckman, Kamal Khayat, Hongyan Ma, Jie Huang, Aditya Kumar

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The production of ordinary Portland cement (OPC), the most broadly utilized man-made material, has been scrutinized due to its contributions to global anthropogenic CO2 emissions. Thus -- to mitigate CO2 emissions -- mineral additives have been promulgated as partial replacements for OPC. However, additives -- depending on their physiochemical characteristics -- can exert varying effects on OPC's hydration kinetics. Therefore -- in regards to more complex systems -- it is infeasible for semi-empirical kinetic models to reveal the underlying nonlinear composition-property (i.e., reactivity) relationships. In the past decade or so, machine learning (ML) has arisen as a promising, …