Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Highly Thiolated Poly (Beta-Amino Ester) Nanoparticles For Acute Redox Applications, Andrew L. Lakes, David A. Puleo, J. Zach Hilt, Thomas D. Dziubla Oct 2018

Highly Thiolated Poly (Beta-Amino Ester) Nanoparticles For Acute Redox Applications, Andrew L. Lakes, David A. Puleo, J. Zach Hilt, Thomas D. Dziubla

Chemical and Materials Engineering Faculty Publications

Disulfides are used extensively in reversible cross-linking because of the ease of reduction into click-reactive thiols. However, the free-radical scavenging properties upon reduction are often under-considered. The free thiols produced upon reduction of this disulfide material mimic the cellular reducing chemistry (glutathione) that serves as a buffer against acute oxidative stress. A nanoparticle formulation producing biologically relevant concentrations of thiols may not only provide ample chemical conjugation sites, but potentially be useful against severe acute oxidative stress exposure, such as in targeted radioprotection. In this work, we describe the synthesis and characterization of highly thiolated poly (β-amino ester) (PBAE) nanoparticles …


Tuning Properties Of Poly(Ethylene Glycol)-Block-Poly(Simvastatin) Copolymers Synthesized Via Triazabicyclodecene, Theodora A. Asafo-Adjei, Thomas D. Dziubla, David A. Puleo Oct 2017

Tuning Properties Of Poly(Ethylene Glycol)-Block-Poly(Simvastatin) Copolymers Synthesized Via Triazabicyclodecene, Theodora A. Asafo-Adjei, Thomas D. Dziubla, David A. Puleo

Biomedical Engineering Faculty Publications

Simvastatin was polymerized into copolymers to better control drug loading and release for therapeutic delivery. When using the conventional stannous octoate catalyst in ring-opening polymerization (ROP), reaction temperatures ≥ 200 °C were required, which promoted uncontrollable and undesirable side reactions. Triazabicyclodecene (TBD), a highly reactive guanidine base organocatalyst, was used as an alternative to polymerize simvastatin. Polymerization was achieved at 150 °C using 5 kDa methyl-terminated poly(ethylene glycol) (mPEG) as the initiator. ROP reactions with 2 kDa or 550 Da mPEG initiators were also successful using TBD at 150 °C instead of stannous octoate, which required a higher reaction temperature. …


Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei Jan 2017

Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei

Theses and Dissertations--Biomedical Engineering

Common biodegradable polyesters such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) are used as drug delivery vehicles for tissue regenerative applications. However, they are typically bioinert, with drug loading limitations. Polymerizing the active agent or precursor into its respective biodegradable polymer would control drug loading via molar ratios of drug to initiator used for synthesis. Simvastatin was chosen due to its favorable anti-inflammatory, angiogenic, and osteogenic properties. In addition, its lactone ring lends itself to ring-opening polymerization and, consequently, the synthesis of poly(simvastatin) with controlled simvastatin release.

Simvastatin was first polymerized with a 5kDa methyl-terminated poly(ethylene glycol) …


Biopolymeric Mucin And Synthetic Polymer Analogs: Their Structure, Function And Role In Biomedical Applications, Sundar Prasanth Authimoolam, Thomas D. Dziubla Mar 2016

Biopolymeric Mucin And Synthetic Polymer Analogs: Their Structure, Function And Role In Biomedical Applications, Sundar Prasanth Authimoolam, Thomas D. Dziubla

Chemical and Materials Engineering Faculty Publications

Mucin networks are viscoelastic fibrillar aggregates formed through the complex self-association of biopolymeric glycoprotein chains. The networks form a lubricious, hydrated protective shield along epithelial regions within the human body. The critical role played by mucin networks in impacting the transport properties of biofunctional molecules (e.g., biogenic molecules, probes, nanoparticles), and its effect on bioavailability are well described in the literature. An alternate perspective is provided in this paper, presenting mucin’s complex network structure, and its interdependent functional characteristics in human physiology. We highlight the recent advances that were achieved through the use of mucin in diverse areas of bioengineering …


Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam Jan 2015

Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam

Theses and Dissertations--Chemical and Materials Engineering

Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated …