Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Edith Cowan University

Microstructure

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Microstructure Evolution And Mechanical Property Response Of Tc11 Titanium Alloy Under Electroshock Treatment, Chang Liu, Lechun Xie, Dongsheng Qian, Lin Hua, Liqiang Wang, Lai-Chang Zhang Jan 2021

Microstructure Evolution And Mechanical Property Response Of Tc11 Titanium Alloy Under Electroshock Treatment, Chang Liu, Lechun Xie, Dongsheng Qian, Lin Hua, Liqiang Wang, Lai-Chang Zhang

Research outputs 2014 to 2021

© 2020 The Authors This work investigated the effects of electroshock treatment (EST) on the microstructure variation and mechanical properties of TC11 alloy. The average hardness of the specimens decreased from 358 HV to 328 HV after EST of 0.04 s, then increased to 396 HV after EST of 0.06 s. After EST, the yield strength of specimen declined from 959 MPa to 797 MPa after EST of 0.04 s, and then increased to 1265 MPa after EST of 0.06 s, but the fracture strain decreased continuously. The variation in mechanical properties was closely related to the phase transition from …


Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia Jan 2020

Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia

Theses: Doctorates and Masters

Current biomaterials such as stainless steel, Co-Cr alloys, commercially pure titanium and Ti-6Al- 4V either possess poor mechanical compatibility and/or produce toxic effects in the human body after several years of usage. Consequently, there is an enormous demand for long-lasting biomaterials which provide a better combination of mechanical, corrosion and biological properties. In addition to this, alloys used in high-strength applications possess either high-strength or large plasticity. However, a high-strength alloy should possess a better blend of both strength and plasticity when used in high-strength applications. Metastable β-titanium alloys are the best suited alloys for biomedical and high-strength applications because …


Design, Microstructure And Properties Of Metastable Beta-Type Biomedical Titanium Alloys, Syed Faraz Jawed Jan 2020

Design, Microstructure And Properties Of Metastable Beta-Type Biomedical Titanium Alloys, Syed Faraz Jawed

Theses: Doctorates and Masters

Many existing implant biomaterials including cobalt-chromium alloy, stainless steel, Ti-6Al-4V and commercially pure titanium have all been shown to demonstrate mechanical incompatibility, poor osseointegration and/or cause cytotoxic effects on the human body after some years of application, leading to revision surgery in most cases. Consequently, there is an immediate need for an enduring biomaterial that displays good mechanical properties and possesses biocompatibility and corrosion resistance, in order to reduce rates of revision surgeries. In this PhD work, based on the 𝐵𝑜̅̅̅̅-𝑀𝑑̅̅̅̅̅, 𝑒/𝑎̅̅̅̅̅-𝛥𝑟̅̅̅ and BF-d-electron superelastic theoretical relationships four new series of quaternary Ti-25Nb-8Zr-xCr, Ti-25Nb-xSn-yCr, Ti26Nb-xMn-yZr and Ti-25Nb-xMn-ySn alloys have been …


Homogenization And Growth Behavior Of Second-Phase Particles In A Deformed Zr-Sn-Nb-Fe-Cu-Si-O Alloy, Liang-Yu Chen, Peng Sang, Lina Zhang, Dongpo Song, Yanqiu Chu, Linjiang Chai, Laichang Zhang Jan 2018

Homogenization And Growth Behavior Of Second-Phase Particles In A Deformed Zr-Sn-Nb-Fe-Cu-Si-O Alloy, Liang-Yu Chen, Peng Sang, Lina Zhang, Dongpo Song, Yanqiu Chu, Linjiang Chai, Laichang Zhang

Research outputs 2014 to 2021

Homogeneous distribution of fine second-phase particles (SPPs) fabricated by cycles of deformation and annealing in zirconium alloys is a critical consideration for the corrosion resistance of fuel claddings. Different deformation degrees of zirconium alloys would result in distinctive microstructures, leading to a distinct growth of SPPs during subsequent annealing. Unfortunately, the homogenization and growth behavior of SPPs in deformed zirconium alloys have not been well studied. In this work, a β-quenched Zr–Sn–Nb–Fe–Cu–Si–O alloy was rolled and annealed at 580◦C or 680◦C. The morphologies, distributions, and sizes of SPPs resulting from the different processing procedures were investigated. A linear distribution of …


Processing Of Al-12si-Tnm Composites By Selective Laser Melting And Evaluation Of Compressive And Wear Properties, Konda Prashanth, Sergio Scudino, Anil Chaubey, Lukas Löber, Pei Wang, Hooyar Attar, Frank Schimansky, Florian Pyczak, Jürgen Eckert Jan 2016

Processing Of Al-12si-Tnm Composites By Selective Laser Melting And Evaluation Of Compressive And Wear Properties, Konda Prashanth, Sergio Scudino, Anil Chaubey, Lukas Löber, Pei Wang, Hooyar Attar, Frank Schimansky, Florian Pyczak, Jürgen Eckert

Research outputs 2014 to 2021

Al-12Si (80 vol%)-Ti52.4Al42.2Nb4.4Mo0.9B0.06 (at.%) (TNM) composites were successfully produced by the selective laser melting (SLM). Detailed structural and microstructural analysis shows the formation of the Al6MoTi intermetallic phase due to the reaction of the TNM reinforcement with the Al-12Si matrix during SLM. Compression tests reveal that the composites exhibit significantly improved properties (∼140 and ∼160 MPa higher yield and ultimate compressive strengths, respectively) compared with the Al-12Si matrix. However, the samples break at ∼6% total strain under compression, thus showing a reduced plasticity of the composites. Sliding wear tests were carried out for both the Al-12Si matrix and the Al-12Si-TNM …