Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Manufacturing

PDF

Series

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 613

Full-Text Articles in Engineering

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf Sep 2022

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf

Faculty Publications

Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms …


Turning Of Carbon Fiber Reinforced Polymer (Cfrp) Composites: Process Modeling And Optimization Using Taguchi Analysis And Multi-Objective Genetic Algorithm, S. M. Abdur Rob, Anil K. Srivastava Sep 2022

Turning Of Carbon Fiber Reinforced Polymer (Cfrp) Composites: Process Modeling And Optimization Using Taguchi Analysis And Multi-Objective Genetic Algorithm, S. M. Abdur Rob, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Carbon Fiber Reinforced Polymer (CFRP) composites have been widely used in aerospace, automotive, nuclear, and biomedical industries due to their high strength-to-weight ratio, corrosion resistance, durability, and excellent thermo-mechanical properties in non-oxidative atmospheres. Machining of CFRP composites has always been a challenge for manufacturers. In this research, a comparative study was performed between the optimal machining parameters of coated and uncoated carbide inserts obtained from the Multi-Objective Genetic Algorithm during turning of CFRP composites. It was found that coated carbide inserts provide lower tool wear and surface roughness, but higher cutting forces compared to those of uncoated carbide inserts …


Automated Posture Positioning For High Precision 3d Scanning Of A Freeform Design Using Bayesian Optimization, Zhaohui Geng, Bopaya Bidanda Sep 2022

Automated Posture Positioning For High Precision 3d Scanning Of A Freeform Design Using Bayesian Optimization, Zhaohui Geng, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Three-dimensional scanning is widely used for the dimension measurements of physical objects with freeform designs. The output point cloud is flexible enough to provide a detailed geometric description for these objects. However, geometric accuracy and precision are still debatable for this scanning process. Uncertainties are ubiquitous in geometric measurement due to many physical factors. One potential factor is the object’s posture in the scanning region. The posture of target positioning on the scanning platform could influence the normal of the scanning points, which could further affect the measurement variances. This paper first investigates the geometric and spatial factors that could …


Ultrafast Laser Ablation Of Inconel 718 For Surface Improvement, Sampson Canacoo, Enrique Contreras Lopez, Oscar Coronel, Farid Ahmed, Jianzhi Li, Anil K. Srivastava Sep 2022

Ultrafast Laser Ablation Of Inconel 718 For Surface Improvement, Sampson Canacoo, Enrique Contreras Lopez, Oscar Coronel, Farid Ahmed, Jianzhi Li, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Inconel 718 is considered difficult to machine because of its ability to maintain its properties at high temperatures. The low thermal conductivity of the alloy causes accelerated tool deterioration when machining. Selective laser melting (SLM) additive manufacturing introduces a possibility of eliminating these difficulties, and producing complex shapes with this difficult-to-machine material. However, high surface roughness and porosity usually occur at the surface of components produced through additive manufacturing. In this study, the surfaces of Inconel 718 samples produced through selective laser melting were treated using laser ablation. The process parameters for the laser ablation process were analyzed in …


Minimax Registration For Point Cloud Alignment, Zhaohui Geng, Mauro Garcia, Bopaya Bidanda Sep 2022

Minimax Registration For Point Cloud Alignment, Zhaohui Geng, Mauro Garcia, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

The alignment, or rigid registration, of three-dimensional (3D) point clouds plays an important role in many applications, such as robotics and computer vision. Recently, with the improvement in high precision and automated 3D scanners, the registration algorithm has become critical in a manufacturing setting for tolerance analysis, quality inspection, or reverse engineering purposes. Most of the currently developed registration algorithms focus on aligning the point clouds by minimizing the average squared deviations. However, in manufacturing practices, especially those involving the assembly of multiple parts, an envelope principle is widely used, which is based on minimax criteria. Our present work …


Trade-Off Characterization Between Social And Environmental Impacts Using Agent-Based Models And Life-Cycle Assessment, Joseph C. Leichty, Christopher S. Mabey, Christopher A. Mattson, John L. Salmon, Jason Weaver Aug 2022

Trade-Off Characterization Between Social And Environmental Impacts Using Agent-Based Models And Life-Cycle Assessment, Joseph C. Leichty, Christopher S. Mabey, Christopher A. Mattson, John L. Salmon, Jason Weaver

Faculty Publications

Meeting the UN’s sustainable development goals requires designers and engineers to solve multi-objective optimization problems involving trade-offs between social, environmental, and economic impacts. This paper presents an approach for designers and engineers to quantify the social and environmental impacts of a product at a population-level and then perform a trade-off analysis between those impacts. In the approach, designers and engineers define the attributes of the product as well as the materials and processes used in the product’s life cycle. Agent-Based Modeling (ABM) tools that have been developed to model the social impacts of products are combined with Life- Cycle Assessment …


Optimizing Build Plate Adhesion Of Polymers In Fused Granule Fabrication Processes, Alex Schroeder, Jason Weaver Aug 2022

Optimizing Build Plate Adhesion Of Polymers In Fused Granule Fabrication Processes, Alex Schroeder, Jason Weaver

Faculty Publications

Perhaps the most crucial element of fused granule fabrication (FGF) is material adhesion; in order to achieve a successful product, the material being printed must adhere to the build plate. For optimal products, the material should only adhere to the build plate until the print is complete, then be easily removable. This paper examines the effects of different build plates, environments, and bonding agents on material adhesion during the FGF process in a CNC mill machine. The force to remove polycarbonate (PC) and polypropylene (PP) from build plates was tested with various bonding agents. Except in one case, the adhesive …


A Comparison Of Layer Deposition And Open Molding Of Petg By Fused Pellet Fabrication In An Additive Manufacturing System, Alex Gibson, Jason Weaver Aug 2022

A Comparison Of Layer Deposition And Open Molding Of Petg By Fused Pellet Fabrication In An Additive Manufacturing System, Alex Gibson, Jason Weaver

Faculty Publications

Additive manufacturing continues to offer new possibilities in both production and economics. The industry has quickly adopted it to rapidly produce parts that would be difficult or cost preventative otherwise. Recent innovation has expanded its capabilities, however there are still significant limitations. Most AM processes are restricted by materials available, in producing large parts, or by not achieving material deposition speeds to make certain products feasible. In addition, tight tolerances for features and surfaces cannot be produced without substantial post processing. High-speed Fused Pellet Fabrication (FPF) in combination with Hybrid Manufacturing (HM) offers expanded capabilities as additive and subtractive process …


Smart Manufacturing—Theories, Methods, And Applications, Zhuming Bi, Lida Xu, Puren Ouyang Aug 2022

Smart Manufacturing—Theories, Methods, And Applications, Zhuming Bi, Lida Xu, Puren Ouyang

Information Technology & Decision Sciences Faculty Publications

(First paragraph) Smart manufacturing (SM) distinguishes itself from other system paradigms by introducing ‘smartness’ as a measure to a manufacturing system; however, researchers in different domains have different expectations of system smartness from their own perspectives. In this Special Issue (SI), SM refers to a system paradigm where digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the internet to expand system capabilities, (3) supporting data-driven decision making at all domains and levels of businesses, or (4) reconfiguring systems to adapt changes and uncertainties in dynamic environments. …


Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill Jul 2022

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are
(a) a one-piece base for the standard kit's (Martin-style) bracing,
(b) 277 Ladder-style bracing, and
(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes …


Dice Testing With The Running Chi-Square Distribution, Warren Campbell, Hunter Wimsatt Jul 2022

Dice Testing With The Running Chi-Square Distribution, Warren Campbell, Hunter Wimsatt

SEAS Faculty Publications

Dice are not fair. Producing a geometrically precise, uniform die is not possible. Casino dice come as close as possible to perfectly random dice because they are machined to an accuracy of a few ten-thousandths of an inch and the putty used for the pips (dots) is the same density as the plastic die body. Polyhedral dice used in games like Dungeons and Dragons are far more difficult to manufacture to high tolerances. Some dice are fairer than others. Since 20-sided dice (D20s) are very difficult to manufacture precisely, they were the focus of this study. The running chi-square distribution …


Bbt Side Mold Assy, Bill Hemphill Jun 2022

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds, speed, multi-pass …


Grey-Taguchi Approach To Optimize Fused Deposition Modeling Process In Terms Of Mechanical Properties And Dimensional Accuracy, Md Asif Bin Syed, Qausar Rhaman, Hasan Md Shahriar, Mohammad Muhshin Aziz Khan Jun 2022

Grey-Taguchi Approach To Optimize Fused Deposition Modeling Process In Terms Of Mechanical Properties And Dimensional Accuracy, Md Asif Bin Syed, Qausar Rhaman, Hasan Md Shahriar, Mohammad Muhshin Aziz Khan

Graduate Student Scholarship

Fused Deposition Modeling (FDM) is a process that allows for the rapid production of functional parts through the deposition of fused material layers in a sequential manner. FDM has flexibility and the potential to create complicated parts. This study aims to optimize the FDM process parameters in terms of tensile strength, flexural strength, and longitudinal shrinkage using the Grey-Taguchi approach. The input parameters chosen to study the effects on dimension and mechanical properties are layer thickness, the raster angle, fill density, the number of contours, printing temperature, and printing speed. The Taguchi L27 orthogonal array is used as the statistical …


Ambient Temperature Phase Change Launcher, Johnny Molloy May 2022

Ambient Temperature Phase Change Launcher, Johnny Molloy

Senior Honors Projects

JOHNNY MOLLOY (Mechanical Engineering) Ambient Temperature Phase Change Launcher Sponsor: Bahram Nassersharif (Mechanical Engineering)

Deployment of payloads stored in watertight cylindrical bodies in underwater environmental conditions are of interest to the marine and naval community. The proposed work will investigate the possibility of using inert carbon dioxide gas compressed into its liquid state and stored under pressure to launch payloads by means of expansion from a cylindrical tube. To suit the needs of the Naval Undersea Warfare Center (NUWC), this launching system must fire from up to 14 ft underwater, have two degrees of freedom, and the payload must not …


Triggering Thermal Runaway In Lithium-Ion Batteries, Chris John May 2022

Triggering Thermal Runaway In Lithium-Ion Batteries, Chris John

Honors Scholar Theses

The proliferation of lithium-ion batteries enables electric devices such as cell phones to electric vehicles to become a reality. A latent danger, however, exists in these batteries. Mechanical, thermal, or electrical damage can initiate a phenomenon known as thermal runaway (TR). This damage causes internal short circuits within the battery, releasing heat and triggering exothermic decomposition reactions. The battery will catch fire if rapid cooling is not present. While experimental designs exist for evaluating TR, significant safety hazards and impracticality may impede testing efforts. Finite element analysis, therefore, becomes a vital tool in modeling TR and mitigation techniques. However, there …


Carbon Nanotori Reinforced Lubricants In Plastic Deformation Processes, Jaime Taha-Tijerina, Juan Manuel Martinez, Daniel Euresti, Patsy Yessenia Arquieta-Guillen Apr 2022

Carbon Nanotori Reinforced Lubricants In Plastic Deformation Processes, Jaime Taha-Tijerina, Juan Manuel Martinez, Daniel Euresti, Patsy Yessenia Arquieta-Guillen

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This research presents the effects of carbon nanotori structures (CNst) dispersed as reinforcement for metal-working and metal-forming lubricants. Synthetic (SL) and deep drawing (DD) nanolubricants were prepared following a two-step method at 0.01 wt.%, 0.05 wt.%, and 0.10 wt.% filler fractions. Slight increases in viscosity (<6%) for nanolubricants were observed as filler fraction was increased through various measured temperatures. Tribological behavior of nanolubricants displayed superb improvements under antiwear and extreme pressure conditions. The load carrying capacity (poz) increased by 16% and 22% at merely 0.01 wt.% CNst reinforcement and up to 73% and 107% at 0.10 wt.% filler fraction for SL and DD nanolubricants, respectively, compared to conventional materials. Additionally, at 0.10 wt.% wear scar evaluations showed a highest benefit of 16% and 24%, for SL and DD nanolubricants, …


A Low-Cost And Low-Tech Solution To Test For Variations Between Multiple Offline Programming Software Packages., Steffen Wendell Bolz Apr 2022

A Low-Cost And Low-Tech Solution To Test For Variations Between Multiple Offline Programming Software Packages., Steffen Wendell Bolz

Masters Theses & Specialist Projects

This research paper chronicles the attempt to bring forth a low-cost and low-tech testing methodology whereby multiple offline programming (OLP) software packages’ generated programs may be compared when run on industrial robots. This research was initiated by the discovery that no real research exists to test between iterations of OLP software packages and that most research for positional accuracy and/or repeatability on industrial robots is expensive and technologically intensive. Despite this, many countries’ leaders are pushing for intensive digitalization of manufacturing and Small and Mediumsized Enterprises (SMEs) are noted to be lagging in adoption of such technologies. The research consisted …


Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez Mar 2022

Evaluation Of Microstructural And Mechanical Behavior Of Ahss Cp780 Steel Welded By Gmaw-Pulsed And Gmaw-Pulsed-Brazing Processes, Alan Jadir Romero-Orozco, Jaime Taha-Tijerina, Rene De Luna-Alanis, Victor Hugo Lopez-Morelos, Maria Del Carmen Ramirez, Melchor Salazar-Martinez, Francisco Fernando Curiel-Lopez

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Joints of complex phase 780 (CP-780) advanced high strength steel (AHSS) were carried out by using an ER-CuAl-A2 filler metal for the gas metal arc welding pulsed brazing (GMAW-P- brazing) process and the ER-80S-D2 for the GMAW-P process employing two levels of heat input. The phases in the weld bead and HAZ were analyzed, and the evaporation of zinc by means of scanning electron microscopy (SEM) was also monitored. The mechanical properties of the welded joints were evaluated by tension, microhardness and vertical impact tests. It was found that there was greater surface Zn evaporation in the joints welded with …


A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin Mar 2022

A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin

Engineering Faculty Articles and Research

Automatic extraction of filler morphology (size, orientation, and spatial distribution) in Scanning Electron Microscopic (SEM) images is essential in many applications such as automatic quality inspection in composite manufacturing. Extraction of filler morphology greatly depends on accurate segmentation of fillers (fibers and particles), which is a challenging task due to the overlap of fibers and particles and their obscure presence in SEM images. Convolution Neural Networks (CNNs) have been shown to be very effective at object recognition in digital images. This paper proposes an automatic filler detection system in SEM images, utilizing a Mask Region-based CNN architecture. The proposed system …


Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz Mar 2022

Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz

Faculty Publications

Structural optimization is a methodology used to generate novel structures within a design space by finding a maximum or minimum point within a set of constraints. Topology optimization, as a subset of structural optimization, is often used as a means for light-weighting a structure while maintaining mechanical performance. This article presents the mathematical basis for topology optimization, focused primarily on the Bi-directional Evolutionary Structural Optimization (BESO) and Solid Isotropic Material with Penalization (SIMP) methodologies, then applying the SIMP methodology to a case study of additively manufactured lattice cells. Three lattice designs were used: the Diamond, I-WP, and Primitive cells. These …


Comparative Study Of Decision Tree Models For Bearing Fault Detection And Classification, Armin Moghadam, Fatemeh Davoudi Kakhki Feb 2022

Comparative Study Of Decision Tree Models For Bearing Fault Detection And Classification, Armin Moghadam, Fatemeh Davoudi Kakhki

Faculty Research, Scholarly, and Creative Activity

Fault diagnosis of bearings is essential in reducing failures and improving functionality and reliability of rotating machines. As vibration signals are non-linear and non-stationary, extracting features for dimension reduction and efficient fault detection is challenging. This study aims at evaluating performance of decision tree-based machine learning models in detection and classification of bearing fault data. A machine learning approach combining the tree-based classifiers with de-rived statistical features is proposed for localized fault classification. Statistical features are extracted from normal and faulty vibration signals though time do-main analysis to develop tree-based models of AdaBoost (AD), classification and regression trees (CART), LogitBoost …


State Of Industry 5.0—Analysis And Identification Of Current Research Trends, Aditya Akundi, Daniel Euresti, Sergio Luna, Wilma Ankobiah, Amit Lopes, Immanuel Edinbarough Feb 2022

State Of Industry 5.0—Analysis And Identification Of Current Research Trends, Aditya Akundi, Daniel Euresti, Sergio Luna, Wilma Ankobiah, Amit Lopes, Immanuel Edinbarough

Manufacturing & Industrial Engineering Faculty Publications and Presentations

The term Industry 4.0, coined to be the fourth industrial revolution, refers to a higher level of automation for operational productivity and efficiency by connecting virtual and physical worlds in an industry. With Industry 4.0 being unable to address and meet increased drive of personalization, the term Industry 5.0 was coined for addressing personalized manufacturing and empowering humans in manufacturing processes. The onset of the term Industry 5.0 is observed to have various views of how it is defined and what constitutes the reconciliation between humans and machines. This serves as the motivation of this paper in identifying and analyzing …


Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen Feb 2022

Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The powder bed-based additive manufacturing (AM) process contains uncertainties in the powder spreading process and powder bed quality, leading to problems in repeatability and quality of the additively manufactured parts. This work focuses on identifying the uncertainty induced by particle size distribution (PSD) on powder flowability and the laser melting process, using Ti6Al4V as a model material. The flowability test results show that the effect of PSDs on flowability is not linear, rather the PSDs near dense packing ratios cause significant reductions in flowability (indicated by the increase in the avalanche angle and break energy of the powders measured by …


Molecular Dynamic Simulation Of Diffusion In The Melt Pool In Laser Additive Alloying Process Of Co-Ni-Cr-Mn-Fe High Entropy Alloy, Mathew Farias, Han Hu, Shanshan Zhang, Jianzhi Li, Ben Xu Jan 2022

Molecular Dynamic Simulation Of Diffusion In The Melt Pool In Laser Additive Alloying Process Of Co-Ni-Cr-Mn-Fe High Entropy Alloy, Mathew Farias, Han Hu, Shanshan Zhang, Jianzhi Li, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

High entropy alloys (HEAs) can be manufactured in many conventional ways, but it becomes difficult of fabricating heterogeneous materials and structures. Selective Laser Melting (SLM) method generally melts pure elemental powders or prefabricated alloy powders without alloying process. In-situ alloying in SLM, which is also called Laser Additive Alloying (LAA), using pure elemental powders becomes a promising method for creating HEA with heterogeneous structures. However, the effect of the diffusion of elements in the molten pool on the formation of HEA remains unclear. In this paper, the well-discussed Cantor HEA was studied in an in-situ alloying situation, where pure elemental …


Preparing A Gamma Ray Instrument For Space Flight, Peter A. Jenke, Michael Briggs Jan 2022

Preparing A Gamma Ray Instrument For Space Flight, Peter A. Jenke, Michael Briggs

Summer Community of Scholars (RCEU and HCR) Project Proposals

No abstract provided.


Mechanical Characterization Instrumentation For Multi-Material Systems, Nicholas Ginga Jan 2022

Mechanical Characterization Instrumentation For Multi-Material Systems, Nicholas Ginga

Summer Community of Scholars (RCEU and HCR) Project Proposals

No abstract provided.


Durability Of Vacuum Infusion Tooling Produced From Fused Granular Fabrication Additive Manufacturing, Nathan Northrup, Jason Weaver, Andy R. George Jan 2022

Durability Of Vacuum Infusion Tooling Produced From Fused Granular Fabrication Additive Manufacturing, Nathan Northrup, Jason Weaver, Andy R. George

Faculty Publications

Large area additive manufacturing (LAAM) has the capability to create tooling that is lower cost than conventionally manufactured tooling and still has sufficient properties for many applications. A vacuum infusion mold was printed from fiberglass-ABS and evaluated for wear and suitability for small vacuum infusion runs. The mold was designed to accentuate high wear as a “worst case” scenario. The mold was able to produce 10 parts successfully before any noticeable change occurred to the surface finish. By 14 parts, the surface finish had roughened sufficiently that demolding was difficult and resulted in damage to the part. Profilometry measurements showed …


Closed Loop Recycling Of Low Friction Polymers In Fused Granule Fabrication Additive Manufacturing Processes, Neil Thompson, Jason Weaver Jan 2022

Closed Loop Recycling Of Low Friction Polymers In Fused Granule Fabrication Additive Manufacturing Processes, Neil Thompson, Jason Weaver

Faculty Publications

Plastic waste is a critical worldwide problem that impacts additive manufacturing (AM). Extensive research has explored how plastic waste in AM can be reduced by recycling prints into new filament, with varying success. An alternative to filament-based extrusion is “fused granule fabrication” (FGF), which extrudes from pellets or granules. This method is often used for large area additive manufacturing (LAAM) of polymers. This paper expands upon the knowledge base from previous research on LAAM and examines the extent to which PETG can be recycled and reprinted through the same FGF tool without significant loss to its material properties. The metric …


Workforce Development Strategies In Additive Manufacturing, Mel Cossette, Ismail Fidan, Gaffar Gailani, Angran Xiao Jan 2022

Workforce Development Strategies In Additive Manufacturing, Mel Cossette, Ismail Fidan, Gaffar Gailani, Angran Xiao

Publications and Research

Additive Manufacturing (AM), also known as 3D Printing (3DP), is one of the newest manufacturing technologies with growing utilization in our daily life. Parallel to this growth, new materials, machines, and specific processes are being developed to produce parts in better-finished quality, at lower cost, and with shorter production time. However, workforce education in this evolving field has not advanced at the same pace as the technology, lacking proven curriculums, high-quality/accredited degree programs, and specialized advanced degrees. In this paper, some best practices established by the authors are introduced. The list is far from exhaustive but is proven to be …


Quantitative Characterization Of Complex Systems—An Information Theoretic Approach, Aditya Akundi, Eric Smith Dec 2021

Quantitative Characterization Of Complex Systems—An Information Theoretic Approach, Aditya Akundi, Eric Smith

Manufacturing & Industrial Engineering Faculty Publications and Presentations

A significant increase in System-of-Systems (SoS) is currently observed in the social and technical domains. As a result of the increasing number of constituent system components, Systems of Systems are becoming larger and more complex. Recent research efforts have highlighted the importance of identifying innovative statistical and theoretical approaches for analyzing complex systems to better understand how they work. This paper portrays the use of an agnostic twostage examination structure for complex systems aimed towards developing an information theorybased approach to analyze complex technical and socio-technical systems. Towards the goal of characterizing system complexity with information entropy, work was carried …