Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Growth Plate Cartilage: Understanding The Contribution Of Adhesion To Column Formation And Matrix Structure, Sydney E. Greer May 2023

Growth Plate Cartilage: Understanding The Contribution Of Adhesion To Column Formation And Matrix Structure, Sydney E. Greer

Theses & Dissertations

Throughout fetal and adolescent development, bone growth is regulated by fine-tuned and controlled maturation of chondrocytes through a cartilaginous template called the growth plate. Bone growth rate is controlled through cell enlargement and extracellular matrix deposition, while the polarized arrangement of proliferative chondrocytes into columns aligned with the long axis of the bone potentiate growth. Chondrocytes are surrounded by a complex three-dimensional arrangement of matrix molecules, all of which are secreted by chondrocytes and assembled/remodeled to support the biological functions of the cell. Adhesion receptors found on the cell membrane of chondrocytes are crucial to the organization of matrix proteins …


Human Ipsc Tissue-Engineered Cartilage For Disease Modeling Of Skeletal Dysplasia-Causing Trpv4 Mutations, Amanda R. Dicks Aug 2021

Human Ipsc Tissue-Engineered Cartilage For Disease Modeling Of Skeletal Dysplasia-Causing Trpv4 Mutations, Amanda R. Dicks

McKelvey School of Engineering Theses & Dissertations

Cartilage is essential to joint development and function. However, there is a variety of cartilage diseases, ranging from developmental (e.g., skeletal dysplasias) to degenerative (e.g., arthritis), in which treatments and therapeutics are lacking. For example, specific point mutations in the ion channel transient receptor potential vanilloid 4 (TRPV4) prevent proper joint development, leading to mild brachyolmia and severe, neonatally lethal metatropic dysplasia. Tissue-engineered cartilage offers an opportunity to elucidate the underlying mechanisms of these cartilage diseases for the development of treatments. Human induced pluripotent stem cells (hiPSCs) are an improved cell source option for cartilage tissue engineering given their minimal …


Membrane Channel Gene Expression In Human Costal And Articular Chondrocytes, A. Asmar, R. Barrett-Jolley, A. Werner, R. Kelly Jr., M. Stacey Apr 2016

Membrane Channel Gene Expression In Human Costal And Articular Chondrocytes, A. Asmar, R. Barrett-Jolley, A. Werner, R. Kelly Jr., M. Stacey

Bioelectrics Publications

Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Sch€onberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human …


Monitoring The Progression Of Spontaneous Articular Cartilage Healing With Infrared Spectroscopy, Megan P. O'Brien, Madhuri Penmatsa, Uday Palukuru, Paul West, Xu Yang, Mathias P. G. Bostrom, Theresa Freeman, Nancy Pleshko Jul 2015

Monitoring The Progression Of Spontaneous Articular Cartilage Healing With Infrared Spectroscopy, Megan P. O'Brien, Madhuri Penmatsa, Uday Palukuru, Paul West, Xu Yang, Mathias P. G. Bostrom, Theresa Freeman, Nancy Pleshko

Publications and Research

Objective. Evaluation of early compositional changes in healing articular cartilage is critical for understanding tissue repair and for therapeutic decision-making. Fourier transform infrared imaging spectroscopy (FT-IRIS) can be used to assess the molecular composition of harvested repair tissue. Furthermore, use of an infrared fiber-optic probe (IFOP) has the potential for translation to a clinical setting to provide molecular information in situ. In the current study, we determined the feasibility of IFOP assessment of cartilage repair tissue in a rabbit model, and assessed correlations with gold-standard histology.

Design. Bilateral osteochondral defects were generated in mature white New Zealand rabbits, and …


A Methodology For Physically-Based Contact And Meniscus Properties In Rigid-Body Computational Knee Modeling, Stephen Wilson Jan 2015

A Methodology For Physically-Based Contact And Meniscus Properties In Rigid-Body Computational Knee Modeling, Stephen Wilson

Open Access Theses & Dissertations

Determining natural inner knee mechanics is a longstanding goal for researchers with applications to prevention and treatment of knee trauma and osteoarthritis. Physical testing has only provided limited information of knee mechanics due to technical challenges and cost. Modeling has been used for decades to obtain some of this otherwise inaccessible information, and recently finite element analysis (FEA) has become a popular means to this end. However, FEA requires time intensive mesh-creation and has large computational requirements. Ideally, model creation should be easy and simulations should be fast to allow for sensitivity analysis. Although allowing easier model creation and offering …


Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok Jan 2014

Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok

Bioelectrics Publications

BACKGROUND: Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy.

METHODS: Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are …


Decorin Expression, Straw-Like Structure, And Differentiation Of Human Costal Cartilage, Michael W. Stacey, Janna Grubb, Anthony Asmar, Julie Pryor, Hani Elsayed-Ali, Ali Beskok, Diganta Dutta, Annie Fecteau, Alice Werner, Dennis A. Darby, Robert Kelly Jan 2012

Decorin Expression, Straw-Like Structure, And Differentiation Of Human Costal Cartilage, Michael W. Stacey, Janna Grubb, Anthony Asmar, Julie Pryor, Hani Elsayed-Ali, Ali Beskok, Diganta Dutta, Annie Fecteau, Alice Werner, Dennis A. Darby, Robert Kelly

Bioelectrics Publications

Costal cartilage is much understudied compared with the load-bearing cartilages. Abnormally grown costal cartilages are associated with the inherited chest wall deformities pectus excavatum and pectus carinatum resulting in sunken and pigeon chests, respectively. A lack of understanding of the ultrastructural and molecular biology of costal cartilage is a major confounder in predicting causes and outcomes of these disorders. This study analyzed the structure of marginal human costal cartilage (ribs 6-10) through scanning electron and atomic force microscopes and identified the presence of straw-like structures running longitudinally. We also demonstrated that chondrocytes tend to occur singly or as doublets and …