Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

University of Arkansas, Fayetteville

Power Electronics

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Design And Evaluation Of High Power, High Efficiency And High Power Density Motor Drives For More Electric Aircrafts, Zhao Yuan Dec 2020

Design And Evaluation Of High Power, High Efficiency And High Power Density Motor Drives For More Electric Aircrafts, Zhao Yuan

Graduate Theses and Dissertations

More-electric aircraft (MEA) is an attractive concept as it can reduce carbon dioxide emission, relieve fossil-fuel consumption, improve the overall efficiency of aircraft, and reduce the operational costs. However, it poses substantial challenges in designing a high-performance motor drive system for such applications. In the report of Aircraft Technology Roadmap to 2050, the propulsion converter is required to be ultra-high efficiency, high power density, and high reliability. Though the wide band-gap devices, such as the Silicon-carbide based Metal Oxide Silicon Field Effect (SiC-MOSFET), shows better switching performance and improved high-temperature performance compared to the silicon counterparts, applying it to the …


Developing A Medium-Voltage Three-Phase Current Compensator Using Modular Switching Positions, Vinson Jones Dec 2020

Developing A Medium-Voltage Three-Phase Current Compensator Using Modular Switching Positions, Vinson Jones

Graduate Theses and Dissertations

The objective of this thesis is to present the context, application, theory, design, construction, and testing of a proposed solution to unbalanced current loading on three-phase four-wire systems. This solution, known as the Medium-Voltage Unbalanced Current Static Compensator or MV-UCSC, is designed to recirculate currents between the three phases of adistribution system. Through this redistribution of the currents negative- and zero-sequence current components are eliminated and a balanced load is seen upstream from the point of installation. The MV-UCSC as it operates in the distribution system is presented followed by its effect on traditional compensation equipment. The construction of the …


Very Low Power Cockcroft-Walton Voltage Multiplier For Rf Energy Harvesting Applications, Trace Langdon May 2019

Very Low Power Cockcroft-Walton Voltage Multiplier For Rf Energy Harvesting Applications, Trace Langdon

Electrical Engineering Undergraduate Honors Theses

A device was required that could harvest the electromagnetic energy present in ambient radio frequency (RF) signals. A part of this device must convert the AC RF signal received by the antenna into a DC signal that can be used in an embedded application. Since the RF signal amplitude is small, it must first be amplified and rectified to become a usable signal. The Cockcroft-Walton voltage multiplier is a subsystem of the design which ideally converts a 100 mV AC signal coming from the antenna to a 350 mV DC signal. The output of the voltage multiplier is used to …


Gating Methods For High-Voltage Silicon Carbide Power Mosfets, Audrey Dearien May 2018

Gating Methods For High-Voltage Silicon Carbide Power Mosfets, Audrey Dearien

Graduate Theses and Dissertations

The objective of this thesis is to assess the challenges associated with driving Silicon Carbide (SiC) power devices, and to compare the potential gate drive methods for these devices which address those challenges. SiC power devices present many benefits that make them suitable for next generation automotive, power utility grid, and energy management applications. High efficiency, increased power density, and reliability at high-temperatures are some of the main benefits of SiC technology. However, the many challenges associated with these devices have prevented their adoption into industry applications. The argument is made in this thesis that the gate driver is a …