Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2024

Institution
Keyword
Publication
Publication Type
File Type

Articles 241 - 270 of 757

Full-Text Articles in Engineering

Machine Learning And Geostatistical Approaches For Discovery Of Weather And Climate Events Related To El Niño Phenomena, Sachi Perera May 2024

Machine Learning And Geostatistical Approaches For Discovery Of Weather And Climate Events Related To El Niño Phenomena, Sachi Perera

Computational and Data Sciences (PhD) Dissertations

El Nino and La Nina are worldwide environmental phenomena brought about by repetitive changes in the water temperature of the Pacific Ocean. Even though the El-Nino impact focuses on a smaller area in the Pacific Ocean near the Equator, these developments have global repercussions, where temperature and precipitation are influenced across the globe, causing droughts and floods simultaneously. In this dissertation, we first derived a drought vulnerability index for the Nile basin, identifying regions with high and low drought risk under ENSO conditions. Next, we evaluated the coherence and periodicity of the ENSO signal to detect its implications on MENA …


Summonable Construction Delivery Robot, Kevin M. Lewis May 2024

Summonable Construction Delivery Robot, Kevin M. Lewis

Honors Capstones

In many different construction industries, there is a need for tools, parts, and other necessary items to be transported quickly and efficiently over various types of terrain. Human resources have often been used to address these needs, which can become very time and cost inefficient over long periods. The design proposal here is aimed at addressing this need by developing an autonomous outdoor mobile robot based on a quadrupedal robot design. This approach differs by incorporating a wheeled and quadrupedal hybrid actuation system that provides terrain negotiation and speed at the appropriate times. The team uses Robot Operating System (ROS) …


Power System Electromagnetic Transient Simulation Using A Semi-Analytical Approach, Min Xiong May 2024

Power System Electromagnetic Transient Simulation Using A Semi-Analytical Approach, Min Xiong

Doctoral Dissertations

This dissertation investigates efficient power system electromagnetic transient (EMT) simulations using a semi-analytical approach.

First, based on state-space equations of system EMT models, a semi-analytical solution (SAS) is acquired using the Differential Transformation Method (DTM). The DTM can efficiently derive the SAS of any linear or nonlinear system as a power series in time in a recursive manner using well-developed transformation rules. A high-order SAS allows a large time step to speed up the simulation while maintaining the same level of accuracy. Also, a variable time step approach is proposed to further improve its efficiency. Case studies on multiple systems …


Selective Transfection Of A Transferrin Receptor-Expressing Cell Line With Dna-Lipid Nanoparticles And Synthesis Of Parasite-Derived Glycans As Biomarkers For Leishmaniasis, Irodiel Vinales Lozano May 2024

Selective Transfection Of A Transferrin Receptor-Expressing Cell Line With Dna-Lipid Nanoparticles And Synthesis Of Parasite-Derived Glycans As Biomarkers For Leishmaniasis, Irodiel Vinales Lozano

Open Access Theses & Dissertations

Despite notable progress in lipid nanoparticle (LNP)-mediated gene delivery, achieving selective transfection of specific cell types, such as cancer cells, remains a significant hurdle, hindering the advancement of innovative gene therapies. In this study, we engineered an LNP formulation encapsulating plasmid DNA (pDNA) encoding the monomeric Green Lantern (mGL) fluorescent reporter protein. The DT7 peptide ligand targeting human transferrin receptor 1 (hTfR1) was also conjugated to the LNP surface for targeted delivery to hTfR1-expressing cells. Optimization of LNP composition yielded favorable particle diameter, ζ-potential, yield, and pDNA encapsulation efficiency. Evaluation of transfection selectivity using a panel of two engineered cell …


Effect Of Patient Specific Blood Biomarkers On Nanoparticle - Cell Interactions, Veronica Gabriela Contreras May 2024

Effect Of Patient Specific Blood Biomarkers On Nanoparticle - Cell Interactions, Veronica Gabriela Contreras

Open Access Theses & Dissertations

Nanoparticles are currently known to be a promising material class for bio-applications in drug delivery and vaccine development. Using gold nanoparticles of varied sizes, in this case 45 and 100 nanometers as a model nanomaterial system, we investigated how patients' blood physiology and chemistry (such as solute, protein, lipid levels) affect the biological response to bionanomaterials. When nanoparticles are injected into the body, biomolecules in the blood adsorb to the nanoparticle's surface to form a biomolecular corona that is specific to the patient's unique blood composition. This biomolecular corona is important because it affects the in vivo fate and biodistribution …


Biofabrication Of Human Tissue-On-A-Chip Models Using Engineered Biocompatible Electrospun Scaffolds, Zayra Naomi Dorado May 2024

Biofabrication Of Human Tissue-On-A-Chip Models Using Engineered Biocompatible Electrospun Scaffolds, Zayra Naomi Dorado

Open Access Theses & Dissertations

This study explored the adoption of furfuryl gelatin (F-gelatin) based electrospun scaffolds compared with poly-caprolactone (PCL) as promising biomaterials for tissue engineering applications. Tissue-on-a-chip models, incorporating F-gelatin and PCL electrospun scaffolds, offer promising avenues for healthy and disease-in-vitro tissue models that can be explored to investigate underlying physiological mechanisms involved in disease development. Previous research has demonstrated the cytocompatibility of F-gelatin when used for modifying implant surfaces and tissue repair applications [1]. Our earlier published works have also successfully utilized F-gelatin for in-vitro cardiac tissue engineering [2][3]. We designed F-gelatin and PCL electrospun scaffolds to replicate the native tissue extracellular …


Vr Circuit Simulation With Advanced Visualization For Enhancing Comprehension In Electrical Engineering, Elliott Wolbach May 2024

Vr Circuit Simulation With Advanced Visualization For Enhancing Comprehension In Electrical Engineering, Elliott Wolbach

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

As technology advances, the field of electrical and computer engineering continuously demands innovative tools and methodologies to facilitate effective learning and comprehension of fundamental concepts. Through a comprehensive literature review, it was discovered that there was a gap in the current research on using VR technology to effectively visualize and comprehend non-observable electrical characteristics of electronic circuits. This thesis explores the integration of Virtual Reality (VR) technology and real-time electronic circuit simulation with enhanced visualization of non-observable concepts such as voltage distribution and current flow within these circuits. The primary objective is to develop an immersive educational platform that makes …


A Study Into The Fundamentals And Enhancements Of Solenoid Based Accelerators, William Poole May 2024

A Study Into The Fundamentals And Enhancements Of Solenoid Based Accelerators, William Poole

Honors College

The utilization of Solenoid-Based Accelerators (SBAs) is complicated due to the multitude of interacting variables in the design of the system. Additionally, SBAs also known as coilguns, are typically inefficient and have a peak efficiency of around 22% [1]. Even with the low efficiency, there is much interest in coilgun systems due to their ability to accelerate objects faster than chemical reactions, with speeds reaching 11km/s [1,2]. In addition to the peak speed, there are other advantages such as the reduced contact with the projectile and controllable launch speeds which allow for applications including the launching of nanosatellites [2]. With …


Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao May 2024

Design, Fabrication, And Characterization Of Advanced High-Power Single-Mode 9xxnm Semiconductor Lasers, Xiaolei Zhao

All Dissertations

This thesis presents the comprehensive design, fabrication, and demonstration of advanced high-power, high-efficiency single-mode semiconductor lasers operating at a wavelength of 9xxnm. We begin with the design of the laser epitaxial structure, serving as the cornerstone for achieving high-power high-efficiency lasers. Our methodology integrates a semi-analytical calculation model, which accounts for Longitudinal Spatial Hole Burning (LSHB) and Two-Photon Absorption (TPA) effects, facilitating a thorough exploration of how design parameters influence output power and conversion efficiency. This approach offers an effective and time-efficient epitaxial structure optimization strategy compared to conventional full 3D simulation models.

Subsequently, we demonstrate high-power, high-efficiency ridge waveguide …


Photovoltaics And Battery-Based End-To-End Direct Current Sustainable Power Networks- Concept, Design, And Control, Vishwas Powar May 2024

Photovoltaics And Battery-Based End-To-End Direct Current Sustainable Power Networks- Concept, Design, And Control, Vishwas Powar

All Dissertations

The consequences of climate change have emphasized the need for a power network that is centered around green, low-cost, and renewable sources of energy. Currently, photovoltaics (PV) and wind turbines are the only two technologies that can convert renewable energy from the sun and wind, respectively, into large-scale power for the electricity network. This dissertation aims to provide a novel solution to implement direct current-based architecture for PV generation coupled with lithium-ion battery storage in an efficient and sustainable manner. Such a power network can enable efficiency, reliability, low cost, and sustainability with minimum impact on the environment. The first …


Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao May 2024

Robust And Trustworthy Deep Learning: Attacks, Defenses And Designs, Bingyin Zhao

All Dissertations

Deep neural networks (DNNs) have achieved unprecedented success in many fields. However, robustness and trustworthiness have become emerging concerns since DNNs are vulnerable to various attacks and susceptible to data distributional shifts. Attacks such as data poisoning and out-of-distribution scenarios such as natural corruption significantly undermine the performance and robustness of DNNs in model training and inference and impose uncertainty and insecurity on the deployment in real-world applications. Thus, it is crucial to investigate threats and challenges against deep neural networks, develop corresponding countermeasures, and dig into design tactics to secure their safety and reliability. The works investigated in this …


Development And Feasibility Studies Of Ai-Powered Socially Assistive Robotics To Promote Wellbeing Of Persons With Alzheimer’S Disease And Related Dementias, Fengpei Yuan May 2024

Development And Feasibility Studies Of Ai-Powered Socially Assistive Robotics To Promote Wellbeing Of Persons With Alzheimer’S Disease And Related Dementias, Fengpei Yuan

Doctoral Dissertations

The number of persons living with Alzheimer's Disease and Related Dementias (PLWDs) has been keeping growing. In 2024, it is estimated that there will be approximately 6.7 million individuals living with Alzheimer's Dementia. This number will increase to about 14 million in 2060. Due to the damage in neurons, the capabilities of memory, thinking, and language will decline as the disease progress. As a result, persons with dementia will gradually withdraw from their social activities and become more dependent on others during their activities of daily living. Making it worse, our society is not ready for the increasing requirements of …


Cmos-Memristive Neuromorphic Architecture For Nonlinear Signal Processing, Manu Rathore May 2024

Cmos-Memristive Neuromorphic Architecture For Nonlinear Signal Processing, Manu Rathore

Doctoral Dissertations

Neuromorphic computing mimics the functional components and structure of the human brain to achieve highly efficient computing with minimal resources and power consumption. Creating neuromorphic systems in Complementary Metal-Oxide-Semiconductor (CMOS) technology offers an alternative computing paradigm to Von neumann computing. However, implementing these systems on an CMOS Integrated Circuit (IC) poses major challenges. These challenges include implementing synaptic weight multiplication and weight tuning operation that conserves energy and occupies minimal area. Additionally, designing a network-on-chip architecture that is reconfigurable and offers a full-connectivity design space is crucial. Furthermore, implementing a complete architecture for nonlinear data processing and, specifically, online learning …


Exploration Of Event-Based Camera Data With Spiking Neural Networks, Charles Peter Rizzo May 2024

Exploration Of Event-Based Camera Data With Spiking Neural Networks, Charles Peter Rizzo

Doctoral Dissertations

Neuromorphic computing is a novel, non-von Neumann computing architecture that employs power efficient spiking neural networks on specialized hardware. Taking inspiration from the human brain, spiking neural networks are temporal computation units that propagate information throughout the network via binary spikes. Compared to conventional artificial neural networks, these networks can be more sparse, smaller in size, and more efficient power-wise when realized on neuromorphic hardware. Event-based cameras are novel vision sensors that capture visual information through a temporal stream of events instead of as a conventional RGB frame. These cameras are low-power collections of pixels that asynchronously emit events over …


Discrete Time State-Space Modeling Framework For Switched-Mode Power Supplies, Jared Baxter May 2024

Discrete Time State-Space Modeling Framework For Switched-Mode Power Supplies, Jared Baxter

Doctoral Dissertations

Electrical power consumption has become ever prominent in modern society. Switch mode power supplies, now more than ever, have become a foundation for residential, commercial, and industrial electrical needs. These demands require numerous advanced power converters, and modeling plays a vital role in the design of these converters. Commonly, modeling is completed using either dedicated hand analysis, which must be completed individually for each topology, or time-stepping circuit simulations, which are insufficiently rapid for broad analysis considering a wide range of potential designs or operating points. Discrete time state-space modeling of switching converters has shown merits in rapid analysis and …


Stability Of Quantum Computers, Samudra Dasgupta May 2024

Stability Of Quantum Computers, Samudra Dasgupta

Doctoral Dissertations

Quantum computing's potential is immense, promising super-polynomial reductions in execution time, energy use, and memory requirements compared to classical computers. This technology has the power to revolutionize scientific applications such as simulating many-body quantum systems for molecular structure understanding, factorization of large integers, enhance machine learning, and in the process, disrupt industries like telecommunications, material science, pharmaceuticals and artificial intelligence. However, quantum computing's potential is curtailed by noise, further complicated by non-stationary noise parameter distributions across time and qubits. This dissertation focuses on the persistent issue of noise in quantum computing, particularly non-stationarity of noise parameters in transmon processors. It …


Experimental Quantum Key Distribution In Turbulent Channels, Kazi Mh Reaz May 2024

Experimental Quantum Key Distribution In Turbulent Channels, Kazi Mh Reaz

Doctoral Dissertations

Quantum Key Distribution (QKD) ensures security by relying on the laws of quantum physics rather than the mathematical intricacy of encryption algorithms. The transmission medium is a critical restricting factor for any quantum communication protocol. Fiber-based optical networks suffer great losses, making quantum communication impossible beyond metropolitan scales. Here free-space quantum communication can be a great alternative for long-distance communication. Even though modern Communications are mostly wireless the atmosphere poses a challenge for QKD. So QKD must be resistant to both atmospheric loss and variations in transmittance. In this thesis we conduct an experiment to strengthen the BB84 protocol's resistance …


Advancing Power Equipment And Line Protection With Practical Solutions, Russell W. Patterson May 2024

Advancing Power Equipment And Line Protection With Practical Solutions, Russell W. Patterson

Doctoral Dissertations

This dissertation is the culmination of an academic and professional career dedicated to power system protection. It begins with an emphasis on the need for excellence in analysis of power system fault events with the goal of improving system protection and reliability. The bulk of this work describes the detailed analysis of various misoperations of protective relays and the solutions that those analysis led to. The last chapters round out the manuscript with two innovations that the author advanced, and which are now becoming part of the state of the art in generator protection being incorporated into Institute of Electrical …


Bidding Strategy For A Wind Power Producer In Us Energy And Reserve Markets, Anne Stratman May 2024

Bidding Strategy For A Wind Power Producer In Us Energy And Reserve Markets, Anne Stratman

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Wind power is one of the world's fastest-growing renewable energy resources and has expanded quickly within the US electric grid. Currently, wind power producers (WPPs) may sell energy products in US markets but are not allowed to sell reserve products, due to the uncertain and intermittent nature of wind power. However, as wind’s share of the power supply grows, it may eventually be necessary for WPPs to contribute to system-wide reserves. This paper proposes a stochastic optimization model to determine the optimal offer strategy for a WPP that participates in the day-ahead and real-time energy and spinning reserve markets. The …


Bottling Automation System, Dylanie Tippit May 2024

Bottling Automation System, Dylanie Tippit

Honors College Theses

This report details the complete design of an automated bottling system. Each bottle is 5.97 centimeters tall and has an outer diameter of 3.81 centimeters. The goal of the project is to successfully fill and cap twelve bottles in under three and a half minutes. The system will have two conveyors in series, a water dispenser, an electrolyte dispenser, capping station, Human Machine Interface (HMI) and Allen Bradley programmable logic controller (PLC). The water and electrolyte dispenser will have two ball valves in series, with the desired amount of volume to dispense the designated liquid. The capping station will be …


An Investigation Of Information Structures In Dna, Joel Mohrmann May 2024

An Investigation Of Information Structures In Dna, Joel Mohrmann

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The information-containing nature of the DNA molecule has been long known and observed. One technique for quantifying the relationships existing within the information contained in DNA sequences is an entity from information theory known as the average mutual information (AMI) profile. This investigation sought to use principally the AMI profile along with a few other metrics to explore the structure of the information contained in DNA sequences.

Treating DNA sequences as an information source, several computational methods were employed to model their information structure. Maximum likelihood and maximum a posteriori estimators were used to predict missing bases in DNA sequences. …


Development Of A Multi-Use Modular Microfluidic Platform Using 3d Printing, Carson Emeigh May 2024

Development Of A Multi-Use Modular Microfluidic Platform Using 3d Printing, Carson Emeigh

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Microfluidic lab-on-a-chip (LoC) technology has driven numerous innovations due to their ability to perform laboratory-scale experiments on a single chip using microchannels. Although LoC technology has been innovative, it still suffers from limitations related to its fabrication and design flexibility. Typical LoC fabrication, with photolithography, is time consuming, expensive, and inflexible. To overcome the limitations of LoC devices, modular microfluidic platforms have been developed where multiple microfluidic modules, each with a specific function or group of functions, can be combined on a single platform. Modular microfluidics have overcome some of the limitations of LoC devices, but currently, their fabrication is …


Design And Optimization Of A Novel Monolithic Spring For High-Frequency Press-Pack Sic Fet Modules, Bogac Canbaz May 2024

Design And Optimization Of A Novel Monolithic Spring For High-Frequency Press-Pack Sic Fet Modules, Bogac Canbaz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Silicon Carbide (SiC) Field-Effect Transistor (FET) modules lead the way in power electronics, being superior in efficiency and robustness for high-frequency applications. The shift towards SiC from traditional silicon (Si)-based devices is driven by its superior thermal conductivity, higher electric field strength, and operational efficiency at elevated temperatures. These features are critical for the development of next-generation, grid-oriented power converters aimed at enhancing the reliability and sustainability of power systems. This research focuses on high-frequency press-pack (HFPP) SiC FET modules, addressing the primary challenge of miniaturizing SiC FET dies without compromising performance, through an innovative press-contact design essential for increased …


Electromagnetic Penetration Of Structures Considering High-Altitude Electromagnetic Pulse, David P. Mignardot May 2024

Electromagnetic Penetration Of Structures Considering High-Altitude Electromagnetic Pulse, David P. Mignardot

Masters Theses

The electric power system is undergoing transformation in the 21st century. Generation is becoming more distributed, more electronic equipment is utilized for operation and control, and load demand is increasing with society’s electrification. As this transformation occurs, both new and old threats to the system’s resilience are of concern. Of the old threats, and a critical component when studying resilience, is high-altitude electromagnetic pulse (HEMP). In this thesis, weaponized electromagnetic pulse and its interaction with the power system is revisited with an emphasis on structure shielding effectiveness against both radiated and conducted energy. Computational electromagnetic plane wave simulations are …


Bcl2 Mediated Targeted Drug Delivery For The Treatment Of Kidney Fibrosis And Stomach Cancer, Humayra Afrin May 2024

Bcl2 Mediated Targeted Drug Delivery For The Treatment Of Kidney Fibrosis And Stomach Cancer, Humayra Afrin

Open Access Theses & Dissertations

Apoptosis, the programmed death of cells, is primarily regulated by a delicate balance between pro-apoptotic and anti-apoptotic signals. The Bcl-2 (B-cell lymphoma 2) family of proteins acts as anti-apoptotic agents, promoting cell survival. Dysregulation of these proteins is a common occurrence in conditions such as cancer and fibrosis, where overexpression of anti-apoptotic members can foster tumor cell survival and fibroblast activation. In this study, our aim was to explore the therapeutic potential of Bcl-2 inhibitors, both as a small molecule (specifically Navitoclax (Navi)), inhibitor and as Bcl-2 siRNA, for targeted treatment. Intravenous administration of Navi often leads to thrombocytopenia, necessitating …


Techniques To Overcome Energy Storage Limitations In Electric Vehicles, Matthew J. Hansen May 2024

Techniques To Overcome Energy Storage Limitations In Electric Vehicles, Matthew J. Hansen

All Graduate Theses and Dissertations, Fall 2023 to Present

Electric vehicles are becoming increasingly popular, battery limitations (cost, size, and weight) complicate electric vehicle adoption. While important research on battery development is ongoing, this dissertation discusses two main approaches to overcome those limitations within the existing battery technology paradigm. Those thrusts are: improving battery health through an optimal charging strategy and minimizing necessary battery size through dynamic wireless power transfer. In this dissertation, relevant literature is discussed, with opportunities for further development considered. Within the two thrusts, three objectives sharpen the focus of the research presented here. First, a planning tool is defined for a battery electric bus fleet. …


Post-Layout Evaluation Of Adiabatic Logic For Energy Efficiency And Cpa Resistance, Jun-Cheng Chin May 2024

Post-Layout Evaluation Of Adiabatic Logic For Energy Efficiency And Cpa Resistance, Jun-Cheng Chin

Masters Theses

The Internet of Things (IoT) has become commonplace in society, but it has been demonstrated that many IoT systems are vulnerable to significant security exploits. This necessitates the need for a closer examination of IoT security. IoT design prerequisites are low power consumption and an emphasis on smaller die areas for increased production yield. Security on the software level typically provides adequate protection but there are hardware-level exploits that are difficult or impossible to counteract. Booting attacks, eavesdropping and interference, and Side-Channel Attacks (SCA) are exploits deployed against IoT devices on the hardware level. To combat these vulnerabilities, several lightweight …


Developing General Purpose Apps To Automate Image Analysis Of Wave-Augmented-Varicose-Explosion Atomization And Other Multi-Phase Interfacial Flows, Ethan Newkirk May 2024

Developing General Purpose Apps To Automate Image Analysis Of Wave-Augmented-Varicose-Explosion Atomization And Other Multi-Phase Interfacial Flows, Ethan Newkirk

Senior Honors Theses

Atomization involves disrupting a flow of contiguous liquid into small droplets ranging from one submicron to several hundred microns (micrometers) in diameter through the processes of exerting sufficient forces that disrupt the retaining surface tensions of the liquid. Understanding this phenomenon requires high-speed imaging from physical models or rigorous multiphase computational fluid dynamics models. We produce a MATLAB application that utilizes various methods of image analysis to quickly analyze and store mathematical data from detailed image analyses. We present a user with numerous tools and capabilities that provide results that deviate from 1.8% to 8.9% of the original image sequence …


Design And Implementation Of An Accelerated Lifetime Testing Platform For Silicon Carbide Mosfets, Conner Deppe May 2024

Design And Implementation Of An Accelerated Lifetime Testing Platform For Silicon Carbide Mosfets, Conner Deppe

All Graduate Theses and Dissertations, Fall 2023 to Present

In the last several years, the United States has seen a significant increase in sales of electric vehicles. The increase of electric vehicles brings the need for increased availability of public charging stations. In the last two years, satisfaction levels for public chargers have fallen significantly due to unreliability, which is raising concerns for new potential electric vehicle owners. To mitigate the reliability concerns, chargers must be physically understood so they can be consistently monitored to assess their health status. To understand the electric vehicle charging reliability, electrical components must first be understood. In the cutting-edge charging technology, the relatively …


Trust Model Measurements For The Energy Grid Of Things, N. Sonali Fernando, John M. Acken, Robert Bass May 2024

Trust Model Measurements For The Energy Grid Of Things, N. Sonali Fernando, John M. Acken, Robert Bass

Electrical and Computer Engineering Faculty Publications and Presentations

Information security is essential for the reliable operation of an Energy Grid of Things (EGoT). In addition to basic information security protocols as defined by published standards, there is a need for a monitoring function that measures the trustworthiness of the various actors participating in an EGoT. We describe in this paper the implementation and evaluation of a Distributed Trust Model that was developed specifically for monitoring communication within an EGoT. We then show how the model parameters are set using statistical measures for hypothesis testing.