Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 43

Full-Text Articles in Engineering

A Survey On Subsurface Signal Propagation, Usman Raza, Abdul Salam Dec 2020

A Survey On Subsurface Signal Propagation, Usman Raza, Abdul Salam

Faculty Publications

Wireless Underground Communication (WUC) is an emerging field that is being developed continuously. It provides secure mechanism of deploying nodes underground which shields them from any outside temperament or harsh weather conditions. This paper works towards introducing WUC and give a detail overview of WUC. It discusses system architecture of WUC along with the anatomy of the underground sensor motes deployed in WUC systems. It also compares Over-the-Air and Underground and highlights the major differences between the both type of channels. Since, UG communication is an evolving field, this paper also presents the evolution of the field along with the …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Secure High Der Penetration Power Distribution Via Autonomously Coordinated Volt/Var Control, Anto Joseph, Keyue Smedley, Shahab Mehraeen Oct 2020

Secure High Der Penetration Power Distribution Via Autonomously Coordinated Volt/Var Control, Anto Joseph, Keyue Smedley, Shahab Mehraeen

Faculty Publications

Traditionally voltage control in distribution power system (DPS) is performed through voltage regulating devices (VRDs) including on load tap changers (OLTCs), step voltage regulators (SVRs), and switched capacitor banks (SCBs). The recent IEEE 1547-2018 from March 2018 requires inverter fed distributed energy resources (DERs) to contribute reactive power to support the grid voltage. To accommodate VAR from DERs, well-organized control algorithm is required to use in this mode to avoid grid oscillations and unintended switching operations of VRDs. This paper presents two voltage control strategies (i) static voltage control considering voltage-reactive power mode (IEEE 1547-2018), (ii) dynamic and extensive voltage …


End-To-End Direct Digital Synthesis Simulation And Mathematical Model To Minimize Quantization Effects Of Digital Signal Generation, Pranav R. Patel, Richard K. Martin Oct 2020

End-To-End Direct Digital Synthesis Simulation And Mathematical Model To Minimize Quantization Effects Of Digital Signal Generation, Pranav R. Patel, Richard K. Martin

Faculty Publications

Direct digital synthesis (DDS) architectures are becoming more prevalent as modern digital-to-analog converter (DAC) and programmable logic devices evolve to support higher bandwidths. The DDS architecture provides the benefit of digital control but at a cost of generating spurious content in the spectrum. The generated spurious content may cause intermodulation distortion preventing proper demodulation of the received signal. The distortion may also interfere with the neighboring frequency bands. This article presents the various DDS architectures and explores the DDS architecture which provides the most digital reconfigurability with the lowest spurious content. End-to-end analytical equations, numerical and mathematical models are developed …


Geometric Analysis Of The Doppler Frequency For General Non-Stationary 3d Mobile-To-Mobile Channels Based On Prolate Spheroidal Coordinates, Michael Walter, Dmitriy Shutin, Martin Schmidhammer, David W. Matolak, Alenka Zajic Oct 2020

Geometric Analysis Of The Doppler Frequency For General Non-Stationary 3d Mobile-To-Mobile Channels Based On Prolate Spheroidal Coordinates, Michael Walter, Dmitriy Shutin, Martin Schmidhammer, David W. Matolak, Alenka Zajic

Faculty Publications

—Mobile-to-mobile channels often exhibit time-variant Doppler frequency shifts due to the movement of transmitter and receiver. An accurate description of the Doppler frequency turns out to be very difficult in Cartesian coordinates and any subsequent algebraic analysis of the Doppler frequency is intractable. In contrast to other approaches, we base our investigation on a geometric description of the Doppler frequency with the following three mathematical pillars: prolate spheroidal coordinate system, algebraic curve theory, and differential forms. The prolate spheroidal coordinate system is more appropriate to algebraically investigate the problem. After the transformation into the new coordinate system, the theory of …


A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak Sep 2020

A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak

Faculty Publications

Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design of robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, an UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. The three distinct types of soils are selected with sand and clay contents ranging from $13\%$ to $86\%$ and $3\%$ to $32\%$, respectively. The impacts of changes in soil texture and soil moisture are investigated with more than $1,200$ measurements in a novel UG testbed that allows flexibility in soil moisture control. Moreover, the …


Developing An Open-Source Lightweight Game Engine With Dnn Support, Haechan Park, Nakhoon Baek Sep 2020

Developing An Open-Source Lightweight Game Engine With Dnn Support, Haechan Park, Nakhoon Baek

Faculty Publications

With the growth of artificial intelligence and deep learning technology, we have many active research works to apply the related techniques in various fields. To test and apply the latest machine learning techniques in gaming, it will be very useful to have a light-weight game engine for quick prototyping. Our game engine is implemented in a cost-effective way, in comparison to well-known commercial proprietary game engines, by utilizing open source products. Due to its simple internal architecture, our game engine is especially beneficial for modifying and reviewing the new functions through quick and repetitive tests. In addition, the game engine …


Cost Analysis Of Optimized Islanded Energy Systems In A Dispersed Air Base Conflict, Jay F. Pearson, Torrey J. Wagner, Justin D. Delorit Sep 2020

Cost Analysis Of Optimized Islanded Energy Systems In A Dispersed Air Base Conflict, Jay F. Pearson, Torrey J. Wagner, Justin D. Delorit

Faculty Publications

The United States Air Force has implemented a dispersed air base strategy to enhance mission effectiveness for near-peer conflicts. Asset dispersal places many smaller bases across a wide geographic area, which increases resupply requirements and logistical complexity. Hybrid energy systems reduce resupply requirements through sustainable, off-grid energy production. This paper presents a novel hybrid energy renewable delivery system (HERDS) model capable of (1) selecting the optimal hybrid energy system design that meets demand at the lowest net present cost and (2) optimizing the delivery of the selected system using existing Air Force cargo aircraft. The novelty of the model’s capabilities …


Electromagnetic Characteristics Of The Soil, Abdul Salam, Usman Raza Aug 2020

Electromagnetic Characteristics Of The Soil, Abdul Salam, Usman Raza

Faculty Publications

The electromagnetic characteristics of the soil are discussed in this chapter. The characteristics of porous bedrock, soil medium, and impacts of rain attenuations are also presented. The models of dielectric soil properties are studied with a rigorous focus on the constitutive parameters of subsurface soil medium. Moreover, the permittivity and wavenumber in soil are explained. In addition, the frequency-dependent dielectric properties such as dispersion in soil, absorption characteristic, and penetration depth versus frequency are reviewed. Furthermore, the effective permittivity of soil–water mixture for through-the soil-propagation mechanism is analyzed thoroughly.


Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza Aug 2020

Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza

Faculty Publications

This chapter presents a framework for adaptive beamforming in underground communication. The wireless propagation is thoroughly analyzed to develop a model using the soil moisture as an input parameter to provide feedback mechanism while enhancing the system performance. The working of array element in the soil is analyzed. Moreover, the effect of soil texture and soil moisture on the resonant frequency and return loss is studied in detail. The wave refraction from the soil–air interface highly degrades the performance of the system. Furthermore, to beam steering is done to achieve high gain for lateral component improving the UG communication. The …


Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well.


Modulation Schemes And Connectivity In Wireless Underground Channel, Abdul Salam, Usman Raza Aug 2020

Modulation Schemes And Connectivity In Wireless Underground Channel, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, a thorough treatment of the modulation schemes for UG Wireless is presented. The effects of soil texture and water content on the capacity of multi-carrier modulation in WUC are discussed. The multi-carrier capacity model results are analyzed. Moreover, the underground MIMO design for underground communications is explained thoroughly. An analysis of medium access in wireless underground is done as well. Furthermore, the soil properties are considered for cross-layer communications of UG wireless. The performance analysis of traditional modulation schemes is also considered. The soil moisture-based modulation approach is also explored in this chapter. The connectivity and diversity …


Underground Wireless Channel Bandwidth And Capacity, Abdul Salam, Usman Raza Aug 2020

Underground Wireless Channel Bandwidth And Capacity, Abdul Salam, Usman Raza

Faculty Publications

The UG channel bandwidth and capacity are vital parameters in wireless underground communication system design. In this chapter, a comprehensive analysis of the wireless underground channel capacity is presented. The impact of soil on return loss, bandwidth, and path loss is discussed. The results of underground multi-carrier modulation capacity are also outlined. Moreover, the single user capacity and multi-carrier capacity are also introduced with an in-depth treatment of soil texture, soil moisture, and distance effects on channel capacity. Finally, the chapter is concluded with a discussion of challenges and open research issues.


Signals In The Soil: Underground Antennas, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: Underground Antennas, Abdul Salam, Usman Raza

Faculty Publications

Antenna is a major design component of Internet of Underground Things (IOUT) communication system. The use of antenna, in IOUT, differs from traditional communication in that it is buried in the soil. Therefore, one of the main challenges, in IOUT applications, is to establish a reliable communication. To that end, there is a need of designing an underground-specific antenna. Three major factors that can impact the performance of a buried antenna are: (1) effect of high soil permittivity changes the wavelength of EM waves, (2) variations in soil moisture with time affecting the permittivity of the soil, and (3) difference …


Soil Moisture And Permittivity Estimation, Abdul Salam, Usman Raza Aug 2020

Soil Moisture And Permittivity Estimation, Abdul Salam, Usman Raza

Faculty Publications

The soil moisture and permittivity estimation is vital for the success of the variable rate approaches in the field of the decision agriculture. In this chapter, the development of a novel permittivity estimation and soil moisture sensing approach is presented. The empirical setup and experimental methodology for the power delay measurements used in model are introduced. Moreover, the performance analysis is explained that includes the model validation and error analysis. The transfer functions are reported as well for soil moisture and permittivity estimation. Furthermore, the potential applications of the developed approach in different disciplines are also examined.


Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza Aug 2020

Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza

Faculty Publications

The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells.


Autonomous Irrigation Management In Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Autonomous Irrigation Management In Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the important application of autonomous irrigation management in the field decision agriculture is discussed. The different types of sensor-guided irrigation systems are presented that includes center pivot systems and drip irrigation systems. Their sensing and actuator components are with detailed focus on real-time decision-making and integration to the cloud. This chapter also presents irrigation control systems which takes, as an input, soil moisture and temperature from IOUT and weather data from Internet and communicate with center pivot based irrigation systems. Moreover, the system architecture is explored where development of the nodes including sensing and actuators is presented. …


Wireless Underground Channel Modeling, Abdul Salam, Usman Raza Aug 2020

Wireless Underground Channel Modeling, Abdul Salam, Usman Raza

Faculty Publications

A comprehensive treatment of wireless underground channel modeling is presented in this chapter. The impacts of the soil on bandwidth and path loss are analyzed. A mechanism for the UG channel sounding and multipath characteristics analysis is discussed. Moreover, novel time-domain impulse response model for WUC is reviewed with the explanation of model parameters and statistics. Furthermore, different types of the through-the-soil wireless communications are surveyed. Finally, the chapter concludes with discussion of the UG wireless statistical model and path loss model for through-the-soil wireless communications in decision agriculture. The model presented in this chapter is also validated with empirical …


Wideband Satcom Model: Evaluation Of Numerical Accuracy And Efficiency, Andrew J. Knisely, Andrew Terzuoli Aug 2020

Wideband Satcom Model: Evaluation Of Numerical Accuracy And Efficiency, Andrew J. Knisely, Andrew Terzuoli

Faculty Publications

The spectral method is typically applied as a simple and efficient method to solve the parabolic wave equation in phase screen scintillation models. The critical factors that can greatly affect the spectral method accuracy is the uniformity and smoothness of the input function. This paper observes these effects on the accuracy of the finite difference and the spectral methods applied to a wideband SATCOM signal propagation model simulated in the ultra-high frequency (UHF) band. The finite difference method uses local pointwise approximations to calculate a derivative. The spectral method uses global trigonometric interpolants that achieve remarkable accuracy for continuously differentiable …


Nondestructive Electromagnetic Characterization Of Uniaxial Sheet Media Using A Two-Flanged Rectangular Waveguide Probe, Neil G. Rogers, Michael J. Havrilla, Milo W. Hyde Iv, Alexander G. Knisely Jun 2020

Nondestructive Electromagnetic Characterization Of Uniaxial Sheet Media Using A Two-Flanged Rectangular Waveguide Probe, Neil G. Rogers, Michael J. Havrilla, Milo W. Hyde Iv, Alexander G. Knisely

Faculty Publications

Excerpt: Recent advancements in fabrication capabilities have renewed interest in the electromagnetic characterization of complex media, as many metamaterials are anisotropic and/or inhomogeneous. Additionally, for composite materials, anisotropy can be introduced by load, strain, misalignment, or damage through the manufacturing process [1], [2]. Methods for obtaining the constitutive parameters for isotropic materials are well understood and widely employed [3]–[8]. Therefore, it is crucial to develop a practical method for the electromagnetic characterization of anisotropic materials.


Securing Photovoltaic (Pv) System Deployments With Data Diodes, Robert D. Larkin, Torrey J. Wagner, Barry E. Mullins Jun 2020

Securing Photovoltaic (Pv) System Deployments With Data Diodes, Robert D. Larkin, Torrey J. Wagner, Barry E. Mullins

Faculty Publications

A survey of a typical photovoltaic (PV) system with and without the cybersecurity protections of a data diode is explored. This survey includes a brief overview of Industrial Control Systems (ICS) and their relationship to the Internet of Things (IoT), Industrial Internet of Things (IIoT), and Industry 4.0 terminology. The cybersecurity features of eight data diodes are compared, and the cyber attack surface, attack scenarios, and mitigations of a typical PV system are discussed. After assessing cybersecurity, the economic considerations to purchase a data diode are considered. At 13.19 cents/kWh, the sale of 227,445 kWh is needed to fund one …


A Multi-Criteria Logistics Analysis Of Photovoltaic Modules For Remote Applications, Nathan Thomsen [*], Dimitri Papazoglou, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt Jun 2020

A Multi-Criteria Logistics Analysis Of Photovoltaic Modules For Remote Applications, Nathan Thomsen [*], Dimitri Papazoglou, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt

Faculty Publications

Reliable electrical power grids are frequently unavailable or inaccessible in remote locations, including developing nation communities, humanitarian relief camps, isolated construction sites, and military contingency bases. This often requires sites to rely on costly generators and continuous fuel supply. Renewable energy systems (RES) in the form of photovoltaic (PV) arrays and energy storage present a rapidly improving alternative to power these remote locations. Previous RES literature and PV optimization models focused on economics, reliability, and environmental concerns, neglecting the importance of logistics factors in remote installations. This paper proposes additional optimization variables applicable to remote PV systems and compares PV …


Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam May 2020

Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam

Faculty Publications

In this article, the results of experiments for the observation of Zenneck surface waves in sub GHz frequency range using dipole antennas are presented. Experiments are conducted over three different soils for communications distances of up to 1 m. This empirical analysis confirms the existence of Zenneck waves over the soil surface. Through the power delay profile (PDP) analysis, it has been shown that other subsurface components exhibit rapid decay as compared to the Zenneck waves. A potential application of the Zenneck waves for energy transmission in the area of decision agriculture is explored. Accordingly, a novel wireless through-the-soil power …


Machine Learning Modeling Of Horizontal Photovoltaics Using Weather And Location Data, Christil Pasion, Torrey J. Wagner, Clay Koschnick, Steven J. Schuldt, Jada B. Williams, Kevin Hallinan May 2020

Machine Learning Modeling Of Horizontal Photovoltaics Using Weather And Location Data, Christil Pasion, Torrey J. Wagner, Clay Koschnick, Steven J. Schuldt, Jada B. Williams, Kevin Hallinan

Faculty Publications

Solar energy is a key renewable energy source; however, its intermittent nature and potential for use in distributed systems make power prediction an important aspect of grid integration. This research analyzed a variety of machine learning techniques to predict power output for horizontal solar panels using 14 months of data collected from 12 northern-hemisphere locations. We performed our data collection and analysis in the absence of irradiation data—an approach not commonly found in prior literature. Using latitude, month, hour, ambient temperature, pressure, humidity, wind speed, and cloud ceiling as independent variables, a distributed random forest regression algorithm modeled the combined …


On-Site And External Energy Harvesting In Underground Wireless, Usman Raza, Abdul Salam Apr 2020

On-Site And External Energy Harvesting In Underground Wireless, Usman Raza, Abdul Salam

Faculty Publications

Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground …


Pitch And Thrust Allocation For Full-Flight-Regime Control Of Winged Evtol Uavs, Jacob B. Willis, Randal W. Beard Apr 2020

Pitch And Thrust Allocation For Full-Flight-Regime Control Of Winged Evtol Uavs, Jacob B. Willis, Randal W. Beard

Faculty Publications

Trajectory tracking control for winged eVTOL aircraft is complicated by the high-angle-of-attack aerodynamics experienced during navigational flight occurring immediately after takeoff and immediately before landing. The total energy use of the vehicle can be reduced and the control performance can be improved by appropriately considering the pitch angle of the vehicle in varying flight conditions. We present a review of high-angle-of-attack aerodynamic models as well as an algorithm for finding the optimal pitch and thrust of a winged eVTOL throughout its flight regime. We show simulation results demonstrating a 75% reduction in tracking error over our previous work while maintaining …


Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola Apr 2020

Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola

Faculty Publications

Atmospheric compensation of long-wave infrared (LWIR) hyperspectral imagery is investigated in this article using set representations learned by a neural network. This approach relies on synthetic at-sensor radiance data derived from collected radiosondes and a diverse database of measured emissivity spectra sampled at a range of surface temperatures. The network loss function relies on LWIR radiative transfer equations to update model parameters. Atmospheric predictions are made on a set of diverse pixels extracted from the scene, without knowledge of blackbody pixels or pixel temperatures. The network architecture utilizes permutation-invariant layers to predict a set representation, similar to the work performed …


Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides Apr 2020

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides

Faculty Publications

We present a novel light detection and ranging (LiDAR) polarimeter that enables measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber, creating a probe pulse characterized by temporally varying polarization. Theoretical expressions for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off and no walk-off and incorporated into a time-dependent polarimeter signal model employing multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and electro-optic phase modulator–based PSG using a single Polarization State Analyzer …


Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an …


Advances In High-Resolution Radiation Detection Using 4h-Sic Epitaxial Layer Devices, Krishna C. Mandal, Joshua W. Kleppinger, Sandeep K. Chaudhuri Feb 2020

Advances In High-Resolution Radiation Detection Using 4h-Sic Epitaxial Layer Devices, Krishna C. Mandal, Joshua W. Kleppinger, Sandeep K. Chaudhuri

Faculty Publications

Advances towards achieving the goal of miniature 4H-SiC based radiation detectors for harsh environment application have been studied extensively and reviewed in this article. The miniaturized devices were developed at the University of South Carolina (UofSC) on 8 × 8 mm 4H-SiC epitaxial layer wafers with an active area of ≈11 mm2. The thicknesses of the actual epitaxial layers were either 20 or 50 µm. The article reviews the investigation of defect levels in 4H-SiC epilayers and radiation detection properties of Schottky barrier devices (SBDs) fabricated in our laboratories at UofSC. Our studies led to the development of …