Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 1909

Full-Text Articles in Engineering

Atap Otomatis Sensor Suhu, Air Dan Tenaga Surya (Alas Tsusu), Koko Hendriawan Dec 2015

Atap Otomatis Sensor Suhu, Air Dan Tenaga Surya (Alas Tsusu), Koko Hendriawan

Elinvo (Electronics, Informatics, and Vocational Education)

Atap otomatis sensor suhu,sensor air dan surya(ALAS TSUSU) sebagai inovasi desain atap yang dapat membuka dan menutup secara otomatis.Atap adalah salah satu komponen yang sangat penting dalam sebuah bangunan. Dengan adanya dua musim yang di miliki Negara Indonesia Antara musim hujan dan kemarau atap tidak hanya sebagai fungsi utama dalam melidungi kita dari matahari dan hujan akan tetapi juga memiliki nilai estetika yang sangat tinggi misalnya intensitas cahaya yang diterima bumi kurang terang dengan rain probability (kemungkinan turun hujan) tinggi. Sedangkan pada musim kemarau, sinar matahari lebih terang dengan kemungkinan turun hujan sangat rendah, bahkan hampir tidak pernah turun hujan. …


Modeling And Experimental Demonstration Of A Hopfield Network Analog-To-Digital Converter With Hybrid Cmos/Memristor Circuits, Xinjie Guo, Farnood Merrikh-Bayat, Ligang Gao, Brian D. Hoskins, Fabien Alibart, Bernabe Linares-Barranco, Luke Theogarajan, Christof Teuscher, Dmitri B. Strukov Dec 2015

Modeling And Experimental Demonstration Of A Hopfield Network Analog-To-Digital Converter With Hybrid Cmos/Memristor Circuits, Xinjie Guo, Farnood Merrikh-Bayat, Ligang Gao, Brian D. Hoskins, Fabien Alibart, Bernabe Linares-Barranco, Luke Theogarajan, Christof Teuscher, Dmitri B. Strukov

Electrical and Computer Engineering Faculty Publications and Presentations

The purpose of this work was to demonstrate the feasibility of building recurrent artificial neural networks with hybrid complementary metal oxide semiconductor (CMOS)/memristor circuits. To do so, we modeled a Hopfield network implementing an analog-to-digital converter (ADC) with up to 8 bits of precision. Major shortcomings affecting the ADC's precision, such as the non-ideal behavior of CMOS circuitry and the specific limitations of memristors, were investigated and an effective solution was proposed, capitalizing on the in-field programmability of memristors. The theoretical work was validated experimentally by demonstrating the successful operation of a 4-bit ADC circuit implemented with discrete Pt/TiO2− …


Feature Selection And Classifier Development For Radio Frequency Device Identification, Trevor J. Bihl Dec 2015

Feature Selection And Classifier Development For Radio Frequency Device Identification, Trevor J. Bihl

Theses and Dissertations

The proliferation of simple and low-cost devices, such as IEEE 802.15.4 ZigBee and Z-Wave, in Critical Infrastructure (CI) increases security concerns. Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting facilitates biometric-like identification of electronic devices emissions from variances in device hardware. Developing reliable classifier models using RF-DNA fingerprints is thus important for device discrimination to enable reliable Device Classification (a one-to-many looks most like assessment) and Device ID Verification (a one-to-one looks how much like assessment). AFITs prior RF-DNA work focused on Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) and Generalized Relevance Learning Vector Quantized Improved (GRLVQI) classifiers. This work 1) introduces a …


Investigation Of Electromagnetic Signatures Of A Fpga Using An Aprel Em-Isight System, Karynn A. Sutherlin Dec 2015

Investigation Of Electromagnetic Signatures Of A Fpga Using An Aprel Em-Isight System, Karynn A. Sutherlin

Theses and Dissertations

Large military platforms have encountered major performance and reliability issues due to an increased number of incidents with counterfeit electronic parts. This has drawn the attention of Department of Defense (DOD) leadership making detection and avoidance of counterfeit electronic parts a top issue for national defense. More defined regulations and processes for identifying, reporting, and disposing of counterfeit electronic parts are being revised to raise awareness for this aggregating issue, as well as enhance the detection of these parts. Multiple technologies are currently employed throughout the supply chain to detect counterfeit electronic parts. These methods are often costly, time-consuming, and …


Carbon Aerogel/Nickel Foam As Electrode For High-Performance Supercapacitor, Zhong Wu, Xin-Bo Zhang Dec 2015

Carbon Aerogel/Nickel Foam As Electrode For High-Performance Supercapacitor, Zhong Wu, Xin-Bo Zhang

Journal of Electrochemistry

Herein, a facile synthesis has been explored to prepare carbon aerogel/Ni foam. Graphene oxide, resorcinol and formaldehyde serve as precursors and polymerize in-situ on the Ni foam after hydrothermal synthesis at 85 oC. After lyophilization treatment, the carbon aerogel/Ni foam with porous structure can be obtained. Electrochemical investigations reveal that the carbon aerogel/Ni foam exhibits superior performances in both aqueous and organic electrolytes involving high specific capacitance and long-term cycling stability. The excellent properties can be ascribed to the unique formation and porous structure, which allows more effective transportations of electron and electrolyte ion.


Special Issue: Electrochemistry Of Carbon Materials, Chen Wei Dec 2015

Special Issue: Electrochemistry Of Carbon Materials, Chen Wei

Journal of Electrochemistry

Carbon materials are traditional electrode materials due to their excellent electrical conductivities, high electrochemical stabilities and wide potential windows. Glassy carbon, graphite, various activated charcoals, carbon fibers etc. have been widely used in electrochemistry serving as electrode substrates or supports. In addition to their applications in basic electrochemistry, carbon materials have also played important roles in electrochemical energy storage and conversion. In recent years, various types of carbon structures, from zero-dimensional carbon nanodots, one-dimensional nanotubes, two-dimensional graphene to three-dimensional porous carbons, have attracted increasing attention in electrochemical field. It has been found that carbon materials have outstanding properties as advanced …


Applications Of Carbon Materials In Electrochemical Energy Storage, Ji Liang, Lei Wen, Hui-Ming Cheng, Feng Li Dec 2015

Applications Of Carbon Materials In Electrochemical Energy Storage, Ji Liang, Lei Wen, Hui-Ming Cheng, Feng Li

Journal of Electrochemistry

An electrode material for electrochemical energy storage is one of the key components for high performance devices. In a variety of electrochemical energy storage systems, carbon materials, especially the lately emerged carbon nanomaterials including the carbon nanotube and graphene, have been playing a very important role and brought new vitality to the development and demonstration of the broad application prospects. In this review, we summarize the applications of various carbon materials in the typical electrochemical energy storage devices, namely lithium/sodium ion batteries, supercapacitors, and lithium-sulfur batteries, as well as flexible electrochemical energy storage and electrochemical catalysis. A perspective of novel …


Colloidal Ionic Supercapacitors, Kun-Feng Chen, Dong-Feng Xue Dec 2015

Colloidal Ionic Supercapacitors, Kun-Feng Chen, Dong-Feng Xue

Journal of Electrochemistry

Supercapacitors have high power density and long cycle life compared with battery systems, but they still suffer from low energy density at the same time. In order to increase the energy density of supercapacitors, we have developed a new type of pseudocapacitor, called colloidal ion supercapacitor, which can directly use commercial metal salts as electrode materials and form electroactive matter by in-situ electrochemical reactions without the need of additional materials synthesis processes. Colloidal ion supercapacitor can fully utilize the redox reaction of metal cations with multiple oxidation states, which can completely release the stored electrical energy of multiple-valence cations, leading …


Progress Of Self-Supported Supercapacitor Electrode Materials Based On Carbon Substrates, Shui-Jian He, Wei Chen Dec 2015

Progress Of Self-Supported Supercapacitor Electrode Materials Based On Carbon Substrates, Shui-Jian He, Wei Chen

Journal of Electrochemistry

Self-supported electrode materials have been widely used in supercapacitors. Carbon materials are promising substrates in building self-supported electrode materials attributed to their diverse structures, rich resource, relatively low cost and high stability. Combined with our own research in this field, we summarize here the recent progress on the synthesis of self-supported electrode materials and their supercapacitance properties. The overall synthetic strategy could be divided into two categories: “top-down” and “bottom-up”. We hope this review is helpful for the development and application of renewable sources in self-supported electrode materials.


Synthesis Of Porous Carbon Nanosheets And Its Application In Sodium-Ion Battery, Jing-Fei Zhang, Jing Lu, Xiao-Yu Yang, Yun-Di Huang, Lin Xu, Dong-Mei Sun, Ya-Wen Tang Dec 2015

Synthesis Of Porous Carbon Nanosheets And Its Application In Sodium-Ion Battery, Jing-Fei Zhang, Jing Lu, Xiao-Yu Yang, Yun-Di Huang, Lin Xu, Dong-Mei Sun, Ya-Wen Tang

Journal of Electrochemistry

Owning to sodium’s high abundance, relatively low cost, similar chemical properties to Li and very suitable redox potential of E0(Na+/Na) = -2.71 V versus SHE which is only 0.3 V above that of lithium, rechargeable sodium ion battery hold much promise as potential alternatives to current lithium ion batteries for energy storage applications. Carbon material is regarded as the most promising anode candidate for sodium ion battery. Particularly, carbon nanosheet with porous structure and high conductivity is expected to have improved sodium ion storage properties. In this paper, we present a two-step pyrolysis-based method for facile synthesis of porous carbon …


Effect Of Mno2 Content On Electrochemical Capacitance Behavior Of Active Carbon Electrode, Kun Shen, Xian-Liang Zhou, Qi-Shun Duan Dec 2015

Effect Of Mno2 Content On Electrochemical Capacitance Behavior Of Active Carbon Electrode, Kun Shen, Xian-Liang Zhou, Qi-Shun Duan

Journal of Electrochemistry

In this work, the manganese dioxide (MnO2) materials were prepared by solution approach at low temperature, thermal decomposition and electrochemical deposition. The actived carbon (AC) and MnO2 composite electrodes were used for aqueous supercapacitors. The morphologies and structures of the prepared materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the electrochemical behaviors were tested by cyclic voltammetry (CV) and galanostatic charge-discharge tests. Electrochemical test data show that the maximum specific capacitances of 151, 172 and 141 F•g-1 were obtained with the contents of MnO2 being 70, 60 and 70% in …


Formal Modeling And Verification Of Delay-Insensitive Circuits, Hoon Park Dec 2015

Formal Modeling And Verification Of Delay-Insensitive Circuits, Hoon Park

Dissertations and Theses

Einstein's relativity theory tells us that the notion of simultaneity can only be approximated for events distributed over space. As a result, the use of asynchronous techniques is unavoidable in systems larger than a certain physical size. Traditional design techniques that use global clocks face this barrier of scale already within the space of a modern microprocessor chip. The most common response by the chip industry for overcoming this barrier is to use Globally Asynchronous Locally Synchronous (GALS) design techniques. The circuits investigated in this thesis can be viewed as examples of GALS design. To make such designs trustworthy it …


Electromechanics Of An Ocean Current Turbine, Vasileios Tzelepis Dec 2015

Electromechanics Of An Ocean Current Turbine, Vasileios Tzelepis

University of New Orleans Theses and Dissertations

The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 …


Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii Dec 2015

Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii

University of New Orleans Theses and Dissertations

An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless'' swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated.

The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the …


Pathological Brain Detection By A Novel Image Feature—Fractional Fourier Entropy, Shuihua Wang, Yudong Zhang, Xiaojun Yang, Ping Sun, Zhengchao Dong, Aijun Lu, Ti-Fei Yuan Dec 2015

Pathological Brain Detection By A Novel Image Feature—Fractional Fourier Entropy, Shuihua Wang, Yudong Zhang, Xiaojun Yang, Ping Sun, Zhengchao Dong, Aijun Lu, Ti-Fei Yuan

Publications and Research

Aim: To detect pathological brain conditions early is a core procedure for patients so as to have enough time for treatment. Traditional manual detection is either cumbersome, or expensive, or time-consuming. We aim to offer a system that can automatically identify pathological brain images in this paper.Method: We propose a novel image feature, viz., Fractional Fourier Entropy (FRFE), which is based on the combination of Fractional Fourier Transform(FRFT) and Shannon entropy. Afterwards, the Welch’s t-test (WTT) and Mahalanobis distance (MD) were harnessed to select distinguishing features. Finally, we introduced an advanced classifier: twin support vector machine (TSVM). Results: A 10 …


Electrical & Computer Engineering News, Georgia Southern University Dec 2015

Electrical & Computer Engineering News, Georgia Southern University

Electrical & Computer Engineering News (2014-2023)

  • Intelligent Vehicles Research Presented at 2015 GURC Conference


From Boolean Equalities To Constraints, Sergio Antoy, Michael Hanus Dec 2015

From Boolean Equalities To Constraints, Sergio Antoy, Michael Hanus

Computer Science Faculty Publications and Presentations

Although functional as well as logic languages use equality to discriminate between logically different cases, the operational meaning of equality is different in such languages. Functional languages reduce equational expressions to their Boolean values, True or False, logic languages use unification to check the validity only and fail otherwise. Consequently, the language Curry, which amalgamates functional and logic programming features, offers two kinds of equational expressions so that the programmer has to distinguish between these uses. We show that this distinction can be avoided by providing an analysis and transformation method that automatically selects the appropriate operation. Without this distinction …


Towards The Development Of A Wearable Tremor Suppression Glove, Yue Zhou Dec 2015

Towards The Development Of A Wearable Tremor Suppression Glove, Yue Zhou

Electronic Thesis and Dissertation Repository

Patients diagnosed with Parkinson’s disease (PD) often associate with tremor. Among other symptoms of PD, tremor is the most aggressive symptom and it is difficult to control with traditional treatments. This thesis presents the assessment of Parkinsonian hand tremor in both the time domain and the frequency domain, the performance of a tremor estimator using different tremor models, and the development of a novel mechatronic transmission system for a wearable tremor suppression device. This transmission system functions as a mechatronic splitter that allows a single power source to support multiple independent applications. Unique features of this transmission system include low …


Constrained Biogeography-Based Optimization For Invariant Set Computation,, Arpit Shah, Daniel Simon, Hanz Richter Dec 2015

Constrained Biogeography-Based Optimization For Invariant Set Computation,, Arpit Shah, Daniel Simon, Hanz Richter

Hanz Richter

We discuss the application of biogeography-based optimization (BBO) to invariant set approximation. BBO is a recently developed evolutionary algorithm (EA) that is motivated by biogeography, which is the study and science of the geographical migration of biological species. Invariant sets are sets in the state space of a dynamic system such that if the state begins in the set, then it remains in the set for all time. Invariant sets have applications in many constrained control problems, and their computation amounts to a constrained optimization problem. We therefore frame the invariant set computation problem as a constrained optimization problem, and …


Characterization Of Ten Channel Electro-Optic Phase Modulator And Amplifier In Algaas/Gaas, David Brown Dec 2015

Characterization Of Ten Channel Electro-Optic Phase Modulator And Amplifier In Algaas/Gaas, David Brown

David C. Brown

No abstract provided.


Dynamic Modeling, Parameter Estimation And Control Of A Leg Prosthesis Test Robot, Hanz Richter, Daniel Simon, William Smith, Sergey Samorezov Dec 2015

Dynamic Modeling, Parameter Estimation And Control Of A Leg Prosthesis Test Robot, Hanz Richter, Daniel Simon, William Smith, Sergey Samorezov

Hanz Richter

Robotic testing can facilitate the development of new concepts, designs and control systems for prosthetic limbs. Human subject test clearances, safety and the lack of repeatability associated with human trials can be reduced or eliminated with automated testing, and test modalities are possible which are dangerous or inconvenient to attempt with patients. This paper describes the development, modeling, parameter estimation and control of a robot capable of reproducing two degree-of-freedom hip motion in the sagittal plane. Hip vertical displacement and thigh angle motion profiles are applied to a transfemoral prosthesis attached to the robot. A treadmill is used as walking …


Data And Network Optimization Effect On Web Performance, Steven Rosenberg, Surbhi Dangi, Isuru Warnakulasooriya Dec 2015

Data And Network Optimization Effect On Web Performance, Steven Rosenberg, Surbhi Dangi, Isuru Warnakulasooriya

Surbhi Dangi

In this study, we measure the effects of two software approaches to improving data and network performance: 1. Content optimization and compression; and 2. Optimizing network protocols. We achieve content optimization and compression by means of BoostEdge by ActivNetworks and employ the SPDY network protocol by Google to lower the round trip time for HTTP transactions. Since the data and transport layers are separate, we conclude our investigation by studying the combined effect of these two techniques on web performance. Using document mean load time as the measure, we found that with and without packet loss, both BoostEdge and SPDY …


A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue Dec 2015

A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue

Xingjian "Chris" Xue

We report the fabrication and evaluation of a platinum nanowire network as a highly efficient current collector for solid oxide fuel cells (SOFCs). The ink of carbon-black supported platinum nanoparticles was sprayed onto the cathode. After firing, the carbon black was oxidized and disappeared as carbon dioxide gas while the platinum nanoparticles connect with one another, forming a tree-branch-like nanowire network. The diameters of the nanowires range from 100 nm to 400 nm. Compared to a conventional platinum paste current collector, the polarization resistance of the PrBaCo2O5+δ (PBCO) cathode with a nanowire current collector was reduced …


A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue Dec 2015

A Platinum Nanowire Network As A Highly Effective Current Collector For Intermediate Temperature Solid Oxide Fuel Cells, Hanping Ding, Xingjian Xue

Xingjian "Chris" Xue

We report the fabrication and evaluation of a platinum nanowire network as a highly efficient current collector for solid oxide fuel cells (SOFCs). The ink of carbon-black supported platinum nanoparticles was sprayed onto the cathode. After firing, the carbon black was oxidized and disappeared as carbon dioxide gas while the platinum nanoparticles connect with one another, forming a tree-branch-like nanowire network. The diameters of the nanowires range from 100 nm to 400 nm. Compared to a conventional platinum paste current collector, the polarization resistance of the PrBaCo2O5+δ (PBCO) cathode with a nanowire current collector was reduced by 44% at 650 …


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria Dec 2015

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria

Carmine Vittoria

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.


Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria Dec 2015

Ba-Hexaferrite Films For Next Generation Microwave Devices, Vincent Girard Harris (1962-), Zhaohui Chen, Yajie Chen, Soack Dae Yoon, Tomokuza Sakai, Anton Geiler, Aria Fan Yang, Yongxue He, Katherine S. Ziemer, Nian X. Sun, C. Vittoria

Carmine Vittoria

Next generation magnetic microwave devices require ferrite films to be thick (>300 μm), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.


Digital Energy Networks: A Post Occupancy Evaluation And Appraisal Of An Intelligent Low Energy Lighting System, Anthony Colohan, Joseph Teehan, Keith Sunderland, Martin Barrett, James Preston Dec 2015

Digital Energy Networks: A Post Occupancy Evaluation And Appraisal Of An Intelligent Low Energy Lighting System, Anthony Colohan, Joseph Teehan, Keith Sunderland, Martin Barrett, James Preston

Conference Papers

The reduction in the electrical power requirements of LED lighting and the coinciding advancements in digital technology have now enabled luminaires to be powered and controlled exclusively over safety extra low voltage (SELV) wiring systems. The implementation of LED luminaires powered via a centralised 48 Volt DC low-latency communication network, with the capability to gather real-time data, has provided the potential to yield considerable electrical energy savings within a building. This paper will present an appraisal of this technology and will examine the technologies potential to make electrical energy savings, improve the quality of lighting and achieve cost savings on …


Multi-Rotor Unmanned Aerial Vehicle, Jacob Dean, James Mixter, Jordan Barr Dec 2015

Multi-Rotor Unmanned Aerial Vehicle, Jacob Dean, James Mixter, Jordan Barr

Honors Theses

An open-source Unmanned Aerial Vehicle (UAV) capable of performing at the same capacity as many top commercially available multi-rotor vehicles is developed. The system allows users unfamiliar with multi-rotor vehicles to achieve flight and land safely, while also serving as a flexible foundation for other UAV projects and opening the door to features that are not currently available. Applications of drone technology are explored.


Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam Dec 2015

Vanadium Oxide Thin-Film Variable Resistor-Based Rf Switches, Kuanchang Pan, Weisong Wang, Eunsung Shin, Kelvin Freeman, Guru Subramanyam

Guru Subramanyam

Vanadium dioxide (VO2) is a unique phase change material (PCM) that possesses a metal-to-insulator transition property. Pristine VO2 has a negative temperature coefficient of resistance, and it undergoes an insulator-to-metal phase change at a transition temperature of 68°C. Such a property makes the VO2 thin-film-based variable resistor (varistor) a good candidate in reconfigurable electronics to be integrated with different RF devices such as inductors, varactors, and antennas. Series single-pole single-throw (SPST) switches with integrated VO2 thin films were designed, fabricated, and tested. The overall size of the device is 380 μm × 600 μm. The SPST switches were fabricated on …


A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam Dec 2015

A High Performance Ceramic-Polymer Separator For Lithium Batteries, Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, Guru Subramanyam

Guru Subramanyam

A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared …