Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Engineering

Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut Dec 2018

Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut

Graduate Theses and Dissertations

The underlying physics of failure are critical in assessing the long term reliability of power packages in their intended field applications, yet traditional reliability determination methods are largely inadequate when considering thermomechanical failures. With current reliability determination methods, long test durations, high costs, and a conglomerate of concurrent reliability degrading threat factors make effective understanding of device reliability difficult and expensive. In this work, an alternative reliability testing apparatus and associated protocol was developed to address these concerns; targeting rapid testing times with minimal cost while preserving fatigue life prediction accuracy. Two test stands were fabricated to evaluate device reliability …


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Graduate Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste …


Gesn Thin Film Epitaxy And Quantum Wells For Optoelectronic Devices, Perry Christian Grant Dec 2018

Gesn Thin Film Epitaxy And Quantum Wells For Optoelectronic Devices, Perry Christian Grant

Graduate Theses and Dissertations

Group IV photonics is an effort to generate viable infrared optoelectronic devices using group IV materials. Si-based optoelectronics have received monumental research since Si is the heart of the electronics industry propelling our data driven world. Silicon however, is an indirect material whose optical characteristics are poor compared to other III-IV semiconductors that make up the optoelectronics industry. There have been major efforts to integrate III-V materials onto Si substrates. Great progress on the integration of these III-V materials has occurred but incompatibility with CMOS processing has presented great difficulty in this process becoming a viable and cost-effective solution. Germanium …


Investigation Of A Gan-Based Power Supply Topology Utilizing Solid State Transformer For Low Power Applications, Akrem Mohamed Elrajoubi Dec 2018

Investigation Of A Gan-Based Power Supply Topology Utilizing Solid State Transformer For Low Power Applications, Akrem Mohamed Elrajoubi

Graduate Theses and Dissertations

Gallium nitride (GaN) power devices exhibit a much lower gate capacitance for a similar on-resistance than its silicon counterparts, making it highly desirable for high-frequency operation in switching converters, which leads to their significant benefits on power density, cost, and system volume. High-density switching converters are being realized with GaN power devices due to their high switching speeds that reduce the size of energy-storage circuit components. The purpose of this dissertation research is to investigate a new isolated GaN AC/DC switching converter based on solid-state transformer configuration with a totem-pole power factor corrector (PFC) front-end, a half-bridge series-resonant converter (SRC) …


Automatic Performance Optimization On Heterogeneous Computer Systems Using Manycore Coprocessors, Chenggang Lai Dec 2018

Automatic Performance Optimization On Heterogeneous Computer Systems Using Manycore Coprocessors, Chenggang Lai

Graduate Theses and Dissertations

Emerging computer architectures and advanced computing technologies, such as Intel’s Many Integrated Core (MIC) Architecture and graphics processing units (GPU), provide a promising solution to employ parallelism for achieving high performance, scalability and low power consumption. As a result, accelerators have become a crucial part in developing supercomputers. Accelerators usually equip with different types of cores and memory. It will compel application developers to reach challenging performance goals. The added complexity has led to the development of task-based runtime systems, which allow complex computations to be expressed as task graphs, and rely on scheduling algorithms to perform load balancing between …


An Rs-485 Transceiver In A Silicon Carbide Cmos Process, Maria Raquel Benavides Herrera Dec 2018

An Rs-485 Transceiver In A Silicon Carbide Cmos Process, Maria Raquel Benavides Herrera

Graduate Theses and Dissertations

This thesis presents the design, simulation and test results of a silicon carbide (SiC) RS-485 transceiver for high temperature applications. This circuit is a building block in the design and fabrication of a digital data processing and control system. Automation processes for extreme environments, remote connection to high temperature locations, deep earth drilling, and high temperature data acquisition are some of the potential applications for such a system. The transceiver was designed and developed in a 1.2 µm SiC-CMOS process by Raytheon Systems, Ltd. (UK). It has been tested with a supply voltage of 12 V and 15 V, temperatures …


Stability Analysis Of A High-Power Microgrid, David Manuel Carballo Rojas Dec 2018

Stability Analysis Of A High-Power Microgrid, David Manuel Carballo Rojas

Graduate Theses and Dissertations

The objective of this thesis is to perform the modeling and stability analysis of a high-power microgrid with multiple parallel-and grid connected voltage source converters using the system parameters from the high-power microgrid testbed at the National Center for Reliable Electric Power Transmission (NCREPT) at the University of Arkansas in order to identify, minimize, if not eliminate, the potential instabilities that can affect the proper operation of the microgrid testbed. To achieve this objective, the mathematical modeling of the high-power microgrid considering the adverse effects of resonances due to interactions among the converter LCL output filters is presented and analyzed. …


Exfoliation, Synthesis, And Characterization Of Nanoscale Te, Takayuki Hironaka Dec 2018

Exfoliation, Synthesis, And Characterization Of Nanoscale Te, Takayuki Hironaka

Graduate Theses and Dissertations

Since the experimental discovery of graphene, two dimensional materials have enjoyed more attention and emphasis in academic research than nanowires, but the latter are an important area of study for creating 1D materials, or single atom chains, the next generation materials for advancing electronic devices. Atomically thin layers can be generated from 2D materials with weak bonds in one direction, and by applying this concept to one dimensional weakly bonded materials, we hypothesize that single atom chains with atomic-scale diameters may be produced. Tellurium (Te) and selenium (Se) have lattices consisting of spiral chains oriented along the c-axis, and each …


Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie Dec 2018

Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie

Graduate Theses and Dissertations

Electrochemical sensors based on the nanostructure of the semiconductor materials are of tremendous interest to be utilized for glucose monitoring. The sensors, based on the nanostructure of the semiconductor materials, are the third generations of the glucose sensors that are fast, sensitive, and cost-effect for glucose monitoring.

Glucose sensors based on pure zinc oxide nanorods (NRs) grown on different substrates, such ITO, FTO, and Si/SiO2/Au, were investigated in this research. Silicon nanowire (NW)- based glucose sensors were also studied. First, an enzyme-based glucose sensor was fabricated out of glass/ITO/ZnO NRs/BSA/GOx/nafion membrane. The sensor was tested amperometrically at different glucose concentrations. …


Intelligent Application Of Flexible Ac Transmission System Components In An Evolving Power Grid, Robert Wall Dec 2018

Intelligent Application Of Flexible Ac Transmission System Components In An Evolving Power Grid, Robert Wall

Graduate Theses and Dissertations

The world revolves around energy and the energy sector is continually transforming and evolving. The status quo has been set by governing agencies in the United States for completely reliable power. The demand for energy efficiency continually rises for multiple reasons. Technology has improved for all sectors of the power grid, including renewable energy sources, fault protection, and SMART grid technology. The addition of new energy sources has led to the decommissioning of inefficient energy sources. The implementation of new technologies and power load on a large scale, coupled with the removal of grid stabilizers has posed different challenges that …


Fully Analog Laser Driver With Robust Active Feedback Control, John Petrilli Dec 2018

Fully Analog Laser Driver With Robust Active Feedback Control, John Petrilli

Graduate Theses and Dissertations

The objective of this project was to go through a real life engineering development cycle, document and justify the design choices, and use background experience in electronic design and control systems to implement the best design possible. The laser driver implemented in this project is designed for the general use of a large variety of diodes in continuous wave mode, much like off the shelf laser drivers. The design goals included improving upon off the shelf laser drivers by decreasing steady state error, setting time, response time, and overshoot. Many different feedback control systems were evaluated, and a modified PID …


Growth And Characterization Of Silicon-Germanium-Tin Semiconductors For Future Nanophotonics Devices, Bader Saad Alharthi Dec 2018

Growth And Characterization Of Silicon-Germanium-Tin Semiconductors For Future Nanophotonics Devices, Bader Saad Alharthi

Graduate Theses and Dissertations

The bright future of silicon (Si) photonics has attracted research interest worldwide. The ultimate goal of this growing field is to develop a group IV based Si foundries that integrate Si-photonics with the current complementary metal–oxide–semiconductor (CMOS) on a single chip for mid-infrared optoelectronics and high speed devices. Even though group IV was used in light detection, such as photoconductors, it is still cannot compete with III-V semiconductors for light generation. This is because most of the group IV elements, such as Si and germanium (Ge), are indirect bandgap materials. Nevertheless, Ge and Si attracted industry attention because they are …


Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li Dec 2018

Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li

Graduate Theses and Dissertations

Fully realizing the potential of InGaN semiconductors requires high quality materials with arbitrary In-content. To this date the growth of In-rich InGaN films is still challenging since it suffers from the low growth temperatures and many detrimental alloying problems. InN/GaN multiple quantum wells (MQWs) and super lattices (SLs) are expected to be promising alternatives to random InGaN alloys since in principle they can achieve the equivalent band gap of InGaN random alloys with arbitrarily high In-content and at the same time bypass many growth difficulties.

This dissertation focuses on studying the growth mechanisms, structural properties and energy structures of InN/GaN …


Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi Dec 2018

Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi

Graduate Theses and Dissertations

This thesis compares the performance of a nine-level transformerless cascaded H-bridge (CHB) inverter with integrated battery energy storage system (BESS) using SiC power MOSFETs and Si IGBTs. Two crucial performance drivers for inverter applications are power loss and efficiency. Both of these are investigated in this thesis. Power devices with similar voltage and current ratings are used in the same inverter topology, and the performance of each device is analyzed with respect to switching frequency and operating temperature. The loss measurements and characteristics within the inverter are discussed. The Saber® simulation software was used for the comparisons. The power MOSFET …


Sustainability Of Utilizing Renewable And Nuclear Energy In Saudi Arabia Using Different Types Of Life Cycle Assessment, Kamel Almutairi Aug 2018

Sustainability Of Utilizing Renewable And Nuclear Energy In Saudi Arabia Using Different Types Of Life Cycle Assessment, Kamel Almutairi

Graduate Theses and Dissertations

Evaluating the global environmental impacts of the current and future energy policies in Saudi Arabia using Life cycle assessment (LCA) method was the main objective of this dissertation. First, the attributional life cycle assessment (ALCA) framework was used to evaluate the Saudi’s air conditioning systems, as they are responsible for about 70% of the total Saudi residential electricity consumption. The ALCA’s results showed that the AC use phase produces the largest share of the environmental impact and the magnitude of the environmental impacts is influenced by the type of primary fuel used for electricity generation.

Emerging non-fossil sources of electricity …


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Graduate Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable …


Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell Aug 2018

Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell

Graduate Theses and Dissertations

In order for an asynchronous design paradigm such as Multi-Threshold NULL Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be aware of its advantages and drawbacks especially with respect to power usage. The power tradeoff between MTNCL and synchronous designs depends on many different factors including design type, circuit size, process node, and pipeline granularity. Each of these design dimensions influences the active power and the leakage power comparisons. This dissertation analyzes the effects of different design dimensions on power consumption and the associated rational for these effects. Results show that while MTNCL …


Si-Based Germanium Tin Photodetectors For Short-Wave And Mid-Wave Infrared Detections, Thach Pham Aug 2018

Si-Based Germanium Tin Photodetectors For Short-Wave And Mid-Wave Infrared Detections, Thach Pham

Graduate Theses and Dissertations

The demand of light-weight and inexpensive imaging system working in the infrared range keeps increasing for the last decade, especially for civil applications. Although several group IV materials such as silicon and germanium are used to realize detectors in the visible and near infrared region, they are not the efficient approach for imaging system in the short-wave infrared detection range and beyond due to bandgap limit. On the other hand, this market is heavily relied upon mature technology from III-V and II-VI elements over years, which are costly to growth and incompatible with available Si complementary metal-oxide-semiconductor (CMOS) foundries. This …


High-Sn-Content Gesn Alloy Towards Room-Temperature Mid Infrared Laser, Wei Dou Aug 2018

High-Sn-Content Gesn Alloy Towards Room-Temperature Mid Infrared Laser, Wei Dou

Graduate Theses and Dissertations

Si photonics is a rapidly expanding technology that integrates photonic circuits onto a Si substrate. The integration of Si electronics and photonics has been a successful technology for a wide range of applications. Group-IV alloy GeSn has drawn great attentions as a complementary metal–oxide–semiconductor compatible optoelectronic material for Si photonics. The devices based on GeSn alloy could be monolithically integrated into well-established and high-yield Si integrated circuits, which is favorable for chip-scale Si photonics featuring smaller size, lower cost, and higher reliability.

The relaxed GeSn with high material quality and high Sn composition is highly desirable to cover mid-infrared wavelength. …


Developing A Hil-Based Software Platform For Testing Electric And Hybrid Vehicle Powertrains, Daniel Schwartz May 2018

Developing A Hil-Based Software Platform For Testing Electric And Hybrid Vehicle Powertrains, Daniel Schwartz

Graduate Theses and Dissertations

The objective of this thesis is to present a dynamometer test stand with hardware in the loop (HIL) testing capabilities for the evaluation of electric and hybrid vehicle powertrains under realistic driving conditions. The traction inverter and dc/dc converter are two crucial subsystems of the powertrain and new prototypes require significant validation before implementing into production vehicles. As fundamental technologies such as power modules, thermal management systems, and passive components improve; the performance improvements to the overall system must be demonstrated. The plug and play nature of the testbed makes it ideal for making direct comparisons of design iterations under …


Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal May 2018

Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal

Graduate Theses and Dissertations

The purpose of this research is to design and fabricate sensors for glucose detection using inexpensive approaches. My first research approach is the fabrication of an amperometric electrochemical glucose sensor, by exploiting the optical properties of semiconductors and structural properties of nanostructures, to enhance the sensor sensitivity and response time. Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted chemical etching of silicon (Si) to synthesize Si nanowires. The concept of gold nano-electrode ensembles is then employed to the sensors in order to boost the current …


Low Latency Intrusion Detection In Smart Grids, Israel Zairi Akingeneye May 2018

Low Latency Intrusion Detection In Smart Grids, Israel Zairi Akingeneye

Graduate Theses and Dissertations

The transformation of traditional power grids into smart grids has seen more new technologies such as communication networks and smart meters (sensors) being integrated into the physical infrastructure of the power grids. However, these technologies pose new vulnerabilities to the cybersecurity of power grids as malicious attacks can be launched by adversaries to attack the smart meters and modify the measurement data collected by these meters. If not timely detected and removed, these attacks may lead to inaccurate system state estimation, which is critical to the system operators for control decisions such as economic dispatch and other related functions.

This …


Fabrication And Characterization Of Graphene Based 2d Materials For Supercapacitors, Anishkumar Manoharan May 2018

Fabrication And Characterization Of Graphene Based 2d Materials For Supercapacitors, Anishkumar Manoharan

Graduate Theses and Dissertations

Supercapacitors have attracted a lot attention due to their efficient energy storage. In comparison to batteries, supercapacitors have high capacitance, energy, and power densities per unit mass than conventional capacitors. Carbon based materials are most promising in supercapacitor application due to their outstanding physical and electrochemical behavior. In this work, a facile method to synthesize a nanocomposite electrode consisting of annealed carbon from carbon ink and MoS2 was demonstrated. Effects of various aqueous and solid electrolytes were studied. It was found that the nanocomposite electrode with 10% MoS2 and 1M Na2SO4 as the aqueous electrolyte tested using the three electrode …


Development Of A Digital Rain-Sensing Irrigation Pump Controller And An Android Enabled Bluetooth Paddlewheel Flowmeter, Jayendra Mishra May 2018

Development Of A Digital Rain-Sensing Irrigation Pump Controller And An Android Enabled Bluetooth Paddlewheel Flowmeter, Jayendra Mishra

Graduate Theses and Dissertations

For better irrigation efficiency, it is recommended that farmers track their water consumption to avoid over-irrigating. However, it is difficult to implement this as it is labor intensive to supervise pumps manually and available technologies require high investment. Therefore, a rain sensing pump controller for 3-phase electric irrigation pumps and a stand-alone portable Android enabled paddlewheel flowmeter has been developed to test their feasibility.

The pump timer is a retrofit device for irrigation pump panels. The controller allows an irrigator to start and stop the pump with less supervision. An infrared rain sensor is integrated with the controller to measure …


Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir May 2018

Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir

Graduate Theses and Dissertations

Investigating semiconductor materials and devices at the nanoscale has become crucial in order to maintain the exponential development in today’s technology. There is a critical need for making devices lower in power consumption and smaller in size. Nanoscale semiconductor materials provide a powerful platform for optoelectronic device engineers. They own interesting properties which include enhanced photoconductivity and size-tunable interband transitions.

In this research, different types of nanostructures were investigated for optoelectronic devices: nanocrystals, nanowires, and thin-films. First, lead selenide nanocrystals with narrow bandgap were synthesized, size-tailored, and functionalized with molecular ligands for the application of uncooled near-infrared photodetectors. The devices …


Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan May 2018

Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan

Graduate Theses and Dissertations

Quantum dot light emitting diodes are investigated as a replacement to the existing organic light emitting diodes that are commonly used for thin film lighting and display applications. In this, all-inorganic quantum dot light emitting diodes with inorganic quantum dot emissive layer and inorganic charge transport layers are designed, fabricated, and characterized. Inorganic materials are more environmentally stable and can handle higher current densities than organic materials. The device consists of CdSe/ZnS alloyed core/shell quantum dots as the emissive layer and metal oxide charge transport layer. The charge transport in these devices is found to occur through resonant energy transfer …


Application Of Modular Multilevel Converters (Mmc) Using Phase-Shifted Pwm And Selective Harmonic Elimination In Distribution Systems, Thouhidul Islam May 2018

Application Of Modular Multilevel Converters (Mmc) Using Phase-Shifted Pwm And Selective Harmonic Elimination In Distribution Systems, Thouhidul Islam

Graduate Theses and Dissertations

Reducing the size and weight of a power electric system is a prodigious challenge to researchers as the development of the latest technologies emerge in the field of electrical engineering. A similar urge is there to develop a light-weight mobile power substation (MPS) to use in the electric power distribution systems during emergency conditions. This thesis proposes a power electronics based solution using the modular multilevel converter (MMC) topology to design the MPS system. The market-available power semiconductor devices are analyzed and suitable devices are selected to design the system. The phase-shifted pulse width modulation (PS-PWM) and selective harmonic elimination …


Evaluation Of Terahertz Imaging For Breast Cancer Detection Using Image Morphing, Tanny Andrea Chavez Esparza May 2018

Evaluation Of Terahertz Imaging For Breast Cancer Detection Using Image Morphing, Tanny Andrea Chavez Esparza

Graduate Theses and Dissertations

This thesis proposes the use of a mesh morphing algorithm for the quantitative evaluation of terahertz (THz) images. This work differs from traditional evaluation methods based on qualitative evaluation because it provides a fair and quantitative measurement of the THz imaging system's performance. The objective of the algorithm is to match the alignment, shape, and resolution of the THz and reference pathology images. Therefore, the proposed morphing method provides a pathology reference for a pixel-by-pixel evaluation of the region classification in the THz image. To achieve this, the morphing algorithm aligns the images using the Pearson's correlation coefficient and reshapes …


Gating Methods For High-Voltage Silicon Carbide Power Mosfets, Audrey Dearien May 2018

Gating Methods For High-Voltage Silicon Carbide Power Mosfets, Audrey Dearien

Graduate Theses and Dissertations

The objective of this thesis is to assess the challenges associated with driving Silicon Carbide (SiC) power devices, and to compare the potential gate drive methods for these devices which address those challenges. SiC power devices present many benefits that make them suitable for next generation automotive, power utility grid, and energy management applications. High efficiency, increased power density, and reliability at high-temperatures are some of the main benefits of SiC technology. However, the many challenges associated with these devices have prevented their adoption into industry applications. The argument is made in this thesis that the gate driver is a …


Experimental And Model-Based Terahertz Imaging And Spectroscopy For Mice, Human, And Phantom Breast Cancer Tissues, Tyler Bowman Jan 2018

Experimental And Model-Based Terahertz Imaging And Spectroscopy For Mice, Human, And Phantom Breast Cancer Tissues, Tyler Bowman

Graduate Theses and Dissertations

The goal of this work is to investigate terahertz technology for assessing the surgical margins of breast tumors through electromagnetic modeling and terahertz experiments. The measurements were conducted using a pulsed terahertz system that provides time and frequency domain signals. Three types of breast tissues were investigated in this work. The first was formalin-fixed, paraffin-embedded tissues from human infiltrating ductal and lobular carcinomas. The second was human tumors excised within 24-hours of lumpectomy or mastectomy surgeries. The third was xenograft and transgenic mice breast cancer tumors grown in a controlled laboratory environment to achieve more data for statistical analysis.

Experimental …