Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 51 of 51

Full-Text Articles in Engineering

Lightweight Encryption Based Security Package For Wireless Body Area Network, Sangwon Shin Jan 2021

Lightweight Encryption Based Security Package For Wireless Body Area Network, Sangwon Shin

Electronic Theses and Dissertations

As the demand of individual health monitoring rose, Wireless Body Area Networks (WBAN) are becoming highly distinctive within health applications. Nowadays, WBAN is much easier to access then what it used to be. However, due to WBAN’s limitation, properly sophisticated security protocols do not exist. As WBAN devices deal with sensitive data and could be used as a threat to the owner of the data or their family, securing individual devices is highly important. Despite the importance in securing data, existing WBAN security methods are focused on providing light weight security methods. This led to most security methods for WBAN …


Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo-Invariant Calibration Site, Manisha Das Chaity Jan 2021

Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo-Invariant Calibration Site, Manisha Das Chaity

Electronic Theses and Dissertations

The objective of this paper is to find an empirical hyperspectral absolute calibration model using Libya 4 pseudo-invariant calibration site (PICS). The approach involves using the Landsat 8 (L8) Operational Land Imager (OLI) as the reference radiometer and using Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm as a hyperspectral source. This model utilizes data from a region of interest (ROI) in an “optimal region” of 3% temporal, spatial, and spectral stability within the Libya 4 PICS. It uses an improved, simple, empirical, hyperspectral Bidirectional Reflectance Distribution function (BRDF) model accounting for four angles: solar zenith …


Human Activity Recognition Based On Wearable Flex Sensor And Pulse Sensor, Xiaozhu Jin Jan 2021

Human Activity Recognition Based On Wearable Flex Sensor And Pulse Sensor, Xiaozhu Jin

Electronic Theses and Dissertations

In order to fulfill the needs of everyday monitoring for healthcare and emergency advice, many HAR systems have been designed [1]. Based on the healthcare purpose, these systems can be implanted into an astronaut’s spacesuit to provide necessary life movement monitoring and healthcare suggestions. Most of these systems use acceleration data-based data record as human activity representation [2,3]. But this data attribute approach has a limitation that makes it impossible to be used as an activity monitoring system for astronavigation. Because an accelerometer senses acceleration by distinguishing acceleration data based on the earth’s gravity offset [4], the accelerometer cannot read …


Extended Pseudo Invariant Calibration Site-Based Trend-To-Trend Cross-Calibration Of Optical Satellite Sensors, Prathana Khakurel Jan 2021

Extended Pseudo Invariant Calibration Site-Based Trend-To-Trend Cross-Calibration Of Optical Satellite Sensors, Prathana Khakurel

Electronic Theses and Dissertations

Satellite sensors have been extremely useful and are in massive demand in the understanding of the Earth’s surface and monitoring of changes. For quantitative analysis and acquiring consistent measurements, absolute radiometric calibration is necessary. The most common vicarious approach of radiometric calibration is cross-calibration, which helps to tie all the sensors to a common radiometric scale for consistent measurement. One of the traditional methods of cross-calibration is performed using temporally and spectrally stable pseudo-invariant calibration sites (PICS). This technique is limited by adequate cloud-free acquisitions for cross-calibration which would require a longer time to study the differences in sensor measurements. …


Characterization, Analysis, And Application Of Wbg Power Devices For Future Power Conversion Systems, Ali Mahmoud Salman Al-Bayati Jan 2021

Characterization, Analysis, And Application Of Wbg Power Devices For Future Power Conversion Systems, Ali Mahmoud Salman Al-Bayati

Electronic Theses and Dissertations

Semiconductor power devices are the most momentous constituents of any power converter system. Fast switching, compactness, high performance and efficiency, and high temperature operation are the exacting challenges experienced by conventional silicon (Si) power device based power converters in many applications. In this dissertation, the wide bandgap (WBG) power devices are studied and used to transcend the limitations imposed by the Si power devices. It mainly focuses on characterization and analysis of the behavior of WBG power devices as well as design and development of efficient, high performance, and reliable dc–dc power converters based on WBG technology. First, using computer …


Deep Learning Methods For Fingerprint-Based Indoor And Outdoor Positioning, Fahad Alhomayani Jan 2021

Deep Learning Methods For Fingerprint-Based Indoor And Outdoor Positioning, Fahad Alhomayani

Electronic Theses and Dissertations

Outdoor positioning systems based on the Global Navigation Satellite System have several shortcomings that have deemed their use for indoor positioning impractical. Location fingerprinting, which utilizes machine learning, has emerged as a viable method and solution for indoor positioning due to its simple concept and accurate performance. In the past, shallow learning algorithms were traditionally used in location fingerprinting. Recently, the research community started utilizing deep learning methods for fingerprinting after witnessing the great success and superiority these methods have over traditional/shallow machine learning algorithms. The contribution of this dissertation is fourfold:

First, a Convolutional Neural Network (CNN)-based method for …


Distributed Control, Optimization, And State Estimation For Renewable Power System, Qiao Li Jan 2021

Distributed Control, Optimization, And State Estimation For Renewable Power System, Qiao Li

Electronic Theses and Dissertations

The traditional power systems are usually centralized systems, in which the control, operation and monitoring are performed by the centralized control center, e.g., SCADA. However, with the development of renewable energy, power systems are getting more and more distributed. So, it becomes necessary to establish the distributed power system operation methods for these power systems. In this research, the distributed techniques for the renewable power systems are proposed based on the consensus protocol technique from graph theory. These techniques cover the three important problems in power systems, i.e., economic dispatch, state estimation, and optimal power flow. First, the Distributed Economic …


Thermal Performance Of Algan/Gan Based Power Switching Devices For Transformerless Inverters, Mahesh B. Manandhar Jan 2021

Thermal Performance Of Algan/Gan Based Power Switching Devices For Transformerless Inverters, Mahesh B. Manandhar

Electronic Theses and Dissertations

Wide Bandgap (WBG) semiconductors like Silicon Carbide (SiC), Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) have superior material properties as compared to Silicon (Si) like higher electrical breakdown voltages and bandgap energies as well as lower leakage currents as compared to Si which make them ideal to operate at higher voltage with lower thermal losses. These properties make WBG materials ideal for power devices like Vertical Double-diffused Metal Oxide Semiconductor Field Effect Transistors (VDMOSFETs). The use of digital prototyping through computer simulation increases the speed and flexibility of the design iterations while reducing the cost and time required for …


Wind Turbine Parameter Calibration Using Deep Learning Approaches, Rebecca Mccubbin Jan 2021

Wind Turbine Parameter Calibration Using Deep Learning Approaches, Rebecca Mccubbin

Electronic Theses and Dissertations

The inertia and damping coefficients are critical to understanding the workings of a wind turbine, especially when it is in a transient state. However, many manufacturers do not provide this information about their turbines, requiring people to estimate these values themselves. This research seeks to design a multilayer perceptron (MLP) that can accurately predict the inertia and damping coefficients using the power data from a turbine during a transient state. To do this, a model of a wind turbine was built in Matlab, and a simulation of a three-phase fault was used to collect realistic fault data to input into …


Optimal Sizing And Operation Of A Pumped Thermal Energy Storage System, Matthew Perez Jan 2021

Optimal Sizing And Operation Of A Pumped Thermal Energy Storage System, Matthew Perez

Electronic Theses and Dissertations

Current trends in the modern grid are leading to the integration of energy storage technologies (ESSs), such as pumped thermal energy storage to help incorporate more variable renewable energy sources into the grid. This paper analyzes the operation of a pumped thermal energy storage (PTES) system under the grid services of energy arbitrage, regulation services, spinning and non-spinning reserve, resource adequacy, and a combination of them all. Each revenue stream is setup into an optimization problem and solved to find which revenue generating technique would generate the most revenue. The combined revenue stream was found to produce the most revenue …


Design, Manufacture, And Test Of A Hybrid Aerial-Ground Robotic Platform, William Garrett Willmon Jan 2021

Design, Manufacture, And Test Of A Hybrid Aerial-Ground Robotic Platform, William Garrett Willmon

Electronic Theses and Dissertations

A hybrid aerial-ground robotic platform allows for enhanced functionality combining most of the operational profiles of an aerial and ground vehicle with applications to intelligence, surveillance, reconnaissance (ISR), infrastructure inspection, emergency response, photography, etc. Motivated by this challenge, we designed, developed, and tested a prototype hybrid aerial-ground robotic vehicle capable of guidance, navigation, and control in the air and on the ground. The thesis focus is on the system design. As such, at first, we designed and analyzed the mechanical component to ensure durability. We then designed the electrical component to reduce overall weight and maximize battery life. We developed …


Mechanisms Of Sensory Adaptation In The Primate Visual System, Boris Isaac Peñaloza Rojas Jan 2021

Mechanisms Of Sensory Adaptation In The Primate Visual System, Boris Isaac Peñaloza Rojas

Electronic Theses and Dissertations

Under ecological conditions, the luminance impinging on the retina varies within a dynamic range of 220 dB. Stimulus contrast can also vary drastically within a scene, and eye movements leave little time for sampling luminance. In addition, the amount of information reaching our visual system far exceeds the brain’s information processing capacity. Given the limited dynamic range of its neurons and its limited capacity in processing visual information in real-time, the brain deploys both structural and functional solutions that work in tandem to adapt to the surroundings. In this work, employing visual psychophysics and computational neuroscience, we study the mechanisms …


Evaluation Of Manufacturing Methods For Antenna Design, Caleb Daniel Keathley Jan 2021

Evaluation Of Manufacturing Methods For Antenna Design, Caleb Daniel Keathley

Electronic Theses and Dissertations

This paper proposes several antennas designed to satisfy both dimension and frequency constraints of a handset. The proposed antennas are modeled and simulated in CST software. After multiple iterations, the final antenna designs are manufactured using both a milling machine and a 3D printer. The fabricated antennas are measured using a network analyzer and compared to their expected simulation results.


Nanoscale Spatial Realization Of Grain Boundary Defects And Its Passivation In Perovskite Solar Cells, Ashraful Haider Chowdhury Jan 2021

Nanoscale Spatial Realization Of Grain Boundary Defects And Its Passivation In Perovskite Solar Cells, Ashraful Haider Chowdhury

Electronic Theses and Dissertations

Perovskite solar cells (PSCs) have seen significant improvement in photovoltaic performance in recent days. However, the performance of PSCs is limited by the defects present at grain boundaries (GB). The study adapted here discusses the nanoscale spatial realization of grain boundary defects and its passivation in perovskite solar cells. Conventional MAPbI3 and state- of-the-art Cs5(MA0.17FA0.83)95Pb(I0.83Br0.17)3-FAMACs perovskite GBs were studied in detail using atomic force microscopy. The density of trap states calculation by kelvin probe force microscopy (KPFM) shows that FAMACs perovskites have lower defects at GB compared with MAPbI3 perovskites. This improvement is caused by the less activation energy of …


Development Of Efficient Wide-Bandgap Perovskite Solar Cells With Composition And Interface Engineering, Khan Mamun Reza Jan 2021

Development Of Efficient Wide-Bandgap Perovskite Solar Cells With Composition And Interface Engineering, Khan Mamun Reza

Electronic Theses and Dissertations

Metal halide perovskites are considered the most promising solar energy technology because of their distinct properties, such as defect tolerance, low cost, easy fabrication due to solution-processibility, band tunability, etc. Due to these properties, the efficiency of perovskite solar cells reaches more than 25% and approaches the limit of singlejunction within last few years. To increase the efficiency further in a more cost-effective way, double junction tandem solar cells with an efficient ‘top’ wide-bandgap cell is desired. But wide-bandgap perovskites still face some critical issues, such as poor morphology, smaller grain size, the formation of excessive lead halides, light-induced halide …


Analysis Of Bundle Protocol With Turbo Code, Babita Pradhan Jan 2021

Analysis Of Bundle Protocol With Turbo Code, Babita Pradhan

Electronic Theses and Dissertations

Bundle protocol is one of the main protocols for data transfer in delay/disruption networking characterized by the long delay, frequent disruption, intermittent connectivity, andhigh error rates. Using a store and forward technique, bundle protocol stores the application data by dividing it into smaller bundles locally at each node and then forwards it to the next node when access is available. Usually, it operates as an overlay network by staying on top of any other networking architecture. As one of the main protocols for delay/disruption networking, many studies have analyzed its performance. This thesis analyzes the bundle protocol’s performance in terms …


Additive And Interface Engineering Of Lead-Tin Mixed Low-Bandgap Perovskite Solar Cells For Higher Efficiency And Improved Stability, Nabin Ghimire Jan 2021

Additive And Interface Engineering Of Lead-Tin Mixed Low-Bandgap Perovskite Solar Cells For Higher Efficiency And Improved Stability, Nabin Ghimire

Electronic Theses and Dissertations

Lead (Pb) -Tin (Sn) mixed perovskites suffer from large open-circuit voltage (VOC) loss due to the rapid crystallization of perovskite film, creating Sn and Pb vacancies. Such vacancies act as defect sites expediting charge carrier recombination, thus hampering the charge carrier dynamics and optoelectronic properties of perovskite films. In the first project, we focused on the passivation of perovskite surface defects to increase the opencircuit voltage of the 1.25 eV low-bandgap perovskite solar cells by utilizing a trace amount of Phenethylammonium iodide (PEAI) in the perovskite precursor solution as a doping agent. The incorporation of PEAI in perovskite precursors improved …


Analysis Of Miniaturized, Circularly Polarized Antennas For Bidirectional Propagation, Mason C. Moore Jan 2021

Analysis Of Miniaturized, Circularly Polarized Antennas For Bidirectional Propagation, Mason C. Moore

Electronic Theses and Dissertations

Size reduction is necessary to fit the recent demand for small sized communication systems in consumer electronics. Wireless communication systems rely on antennas for long range transmission of signals, so size reduced antennas have been sought after in recent years. Also, not many antennas are designed for use in bidirectional scenarios like subways, tunnels, bridges, etc. Three sized reduced antennas with circular polarization are presented for use in bidirectional communication systems. An electrically small pattern reconfigurable array, an electrically small two-sided printed cross dipole, and a size reduced printed wideband antenna are introduced within this thesis. All antennas’ results are …


In-Situ Process Monitoring For Metal Additive Manufacturing (Am) Through Acoustic Technique, Md Shahjahan Hossain Jan 2021

In-Situ Process Monitoring For Metal Additive Manufacturing (Am) Through Acoustic Technique, Md Shahjahan Hossain

Electronic Theses and Dissertations

Additive Manufacturing (AM) is currently a widely used technology in different industries such as aerospace, medical, and consumer products. Previously it was mainly used for prototyping of the products, but now it is equally valuable for commercial product manufacturing. More profound understanding is still needed to track and identify defects during the AM process to ensure higher quality products with less material waste. Nondestructive testing becomes an essential form of testing for AM parts, where AE is one of the most used methods for in situ process monitoring. The Acoustic Emission (AE) approach has gained a reputation in nondestructive testing …


Quality Assurance Of Lightweight Structures Via Phase-Based Motion Estimation, Ikenna E. Ifekaonwu Jan 2021

Quality Assurance Of Lightweight Structures Via Phase-Based Motion Estimation, Ikenna E. Ifekaonwu

Electronic Theses and Dissertations

In recent years, lightweight structures have become mature and adopted in various applications. The importance of quality assurance cannot be overemphasized hence extensive research has been conducted to assess the quality of lightweight structures. This study investigates a novel process that exploits motion magnification to investigate the damage characteristics of lightweight mission-critical parts. The goal is to assure the structural integrity of 3D printed structures and composite structures by determining the inherent defects present in the part by exploiting their vibration characteristics. The minuscule vibration of the structure was recorded with the aid of a high-speed digital camera, and the …


Development Of A Mathematical Model For Galvanic Cells, Joshua C. Johnson Jan 2021

Development Of A Mathematical Model For Galvanic Cells, Joshua C. Johnson

Electronic Theses and Dissertations

It is possible to utilize principles of equilibrium thermodynamics to model the voltage a battery renders as it powers a load in time and discharges. Similarly, consideration of the internal chemistry inside a battery, or galvanic cell, enables modeling thereof. This paper builds upon these principles and presents a derivation of the Nernst equation that utilizes this result to model discharge curves in time for different types of batteries. The Nernst equation relates chemical activity of the reagents inside a battery to the open circuit voltage rendered by the system. By combining the Nernst equation with Faraday's laws of electrolysis, …