Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Faculty Research and Publications

Torque

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Comparative Study Of Winding Configurations Of A Five-Phase Flux-Switching Pm Machine, Hao Chen, Xiangdong Liu, Ayman M. El-Refaie, Jing Zhao, Nabeel Demerdash, Jiangbiao He Dec 2019

Comparative Study Of Winding Configurations Of A Five-Phase Flux-Switching Pm Machine, Hao Chen, Xiangdong Liu, Ayman M. El-Refaie, Jing Zhao, Nabeel Demerdash, Jiangbiao He

Electrical and Computer Engineering Faculty Research and Publications

This paper introduces a general method for determination of the most suitable winding configurations for five-phase flux-switching permanent magnet (FSPM) machines, associated with feasible stator/rotor-pole combinations. Consequently, the effect of winding configurations on the performance of a five-phase outer-rotor FSPM machine is thoroughly investigated, including non-overlapping concentrated windings (single-layer, double-layer, and multi-layer) as well as distributed winding. The electromagnetic characteristics in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerant capability under faulty situations are evaluated and compared in detail. This work shows that compared with the conventional single-layer or double-layer concentrated windings, the FSPM machine …


Computationally Efficient Optimization Of A Five-Phase Flux-Switching Pm Machine Under Different Operating Conditions, Hao Chen, Xiangdong Liu, Nabeel Demerdash, Ayman M. El-Refaie, Zhen Chen, Jiangbiao He May 2019

Computationally Efficient Optimization Of A Five-Phase Flux-Switching Pm Machine Under Different Operating Conditions, Hao Chen, Xiangdong Liu, Nabeel Demerdash, Ayman M. El-Refaie, Zhen Chen, Jiangbiao He

Electrical and Computer Engineering Faculty Research and Publications

This paper investigates the comparative design optimizations of a five-phase outer-rotor flux-switching permanent magnet (FSPM) machine for in-wheel traction applications. To improve the comprehensive performance of the motor, two kinds of large-scale design optimizations under different operating conditions are performed and compared, including the traditional optimization performed at the rated operating point and the optimization targeting the whole driving cycles. Three driving cycles are taken into account, namely, the urban dynamometer driving schedule (UDDS), the highway fuel economy driving schedule (HWFET), and the combined UDDS/HWFET, representing the city, highway, and combined city/highway driving, respectively. Meanwhile, the computationally efficient finite-element analysis …


Large-Scale Design Optimization Of Pm Machines Over A Target Operating Cycle, Alireza Fatemi, Nabeel Demerdash, Thomas W. Nehl, Dan M. Ionel Sep 2016

Large-Scale Design Optimization Of Pm Machines Over A Target Operating Cycle, Alireza Fatemi, Nabeel Demerdash, Thomas W. Nehl, Dan M. Ionel

Electrical and Computer Engineering Faculty Research and Publications

A large-scale finite element model-based design optimization algorithm is developed for improving the drive-cycle efficiency of permanent magnet (PM) synchronous machines with wide operating ranges such as those used in traction propulsion motors. The load operating cycle is efficiently modeled by using a systematic k-means clustering method to identify the operating points representing the high-energy-throughput zones in the torque-speed plane. The machine performance is evaluated over these cyclic representative points using a recently introduced computationally efficient finite element analysis, which is upgraded to include both constant torque and field-weakening operations in the evaluation of the machine performance metrics. In contrast …


Optimal Design Of Ipm Motors With Different Cooling Systems And Winding Configurations, Alireza Fatemi, Dan M. Ionel, Nabeel Demerdash, Thomas W. Nehl Jul 2016

Optimal Design Of Ipm Motors With Different Cooling Systems And Winding Configurations, Alireza Fatemi, Dan M. Ionel, Nabeel Demerdash, Thomas W. Nehl

Electrical and Computer Engineering Faculty Research and Publications

Performance improvement of permanent magnet (PM) motors through optimization techniques has been widely investigated in the literature. Oftentimes the practice of design optimization leads to derivation/interpretation of optimal scaling rules of PM motors for a particular loading condition. This paper demonstrates how these derivations vary with respect to the machine ampere loading and ferrous core saturation level. A parallel sensitivity analysis using a second-order response surface methodology followed by a large-scale design optimization based on evolutionary algorithms are pursued in order to establish the variation of the relationships between the main design parameters and the performance characteristics with respect to …


Robust Non-Permanent Magnet Motors For Vehicle Propulsion, Tsarajidy Raminosoa, David A. Torrey, Ayman M. El-Refaie, Di Pan, Stefan Grubic, Kevin Grace Feb 2016

Robust Non-Permanent Magnet Motors For Vehicle Propulsion, Tsarajidy Raminosoa, David A. Torrey, Ayman M. El-Refaie, Di Pan, Stefan Grubic, Kevin Grace

Electrical and Computer Engineering Faculty Research and Publications

There has been growing interest in electrical machines that reduce or eliminate rare-earth material content. Traction applications are among the key applications where reducing cost and hence reduction or elimination of rare-earth materials is a key requirement. This paper will assess the potential of three non-permanent magnet options in the context of vehicle propulsion applications: 1) a conventional Switched Reluctance Machine (SRM), 2) a DC-biased Reluctance Machine (DCRM) and, 3) a Wound Field Flux Switching Machine (WFFSM). The three machines were designed to achieve the hybrid vehicle traction requirements of 55kW peak and 30kW continuous over a speed range going …


Establishing The Relative Merits Of Interior And Spoke-Type Permanent-Magnet Machines With Ferrite Or Ndfeb Through Systematic Design Optimization, Peng Zhang, Gennadi Y. Sizov, Dan M. Ionel, Nabeel Demerdash Jul 2015

Establishing The Relative Merits Of Interior And Spoke-Type Permanent-Magnet Machines With Ferrite Or Ndfeb Through Systematic Design Optimization, Peng Zhang, Gennadi Y. Sizov, Dan M. Ionel, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

In this paper, a multiobjective design optimization method combining design-of-experiments techniques and differential-evolution algorithms is presented. The method was implemented and utilized in order to provide practical engineering insights for the optimal design of interior and spoke-type permanent-magnet machines. Two combinations with 12 slots and 8 poles and 12 slots and 10 poles, respectively, have been studied in conjunction with rare-earth neodymium-iron-boron (NdFeB) and ferrites. As part of the optimization process, a computationally efficient finite-element electromagnetic analysis was employed for estimating the performance of thousands of candidate designs. Three optimization objectives were concurrently considered for minimum total material cost, power …


Multi-Objective Tradeoffs In The Design Optimization Of A Brushless Permanent-Magnet Machine With Fractional-Slot Concentrated Windings, Peng Zhang, Gennadi Y. Sizov, Muyang Li, Dan M. Ionel, Nabeel Demerdash, Steven J. Stretz, Alan W. Yeadon Sep 2014

Multi-Objective Tradeoffs In The Design Optimization Of A Brushless Permanent-Magnet Machine With Fractional-Slot Concentrated Windings, Peng Zhang, Gennadi Y. Sizov, Muyang Li, Dan M. Ionel, Nabeel Demerdash, Steven J. Stretz, Alan W. Yeadon

Electrical and Computer Engineering Faculty Research and Publications

In this paper, a robust parametric model of a brushless permanent magnet machine with fractional-slot concentrated windings, which was developed for automated design optimization is presented. A computationally efficient finite-element analysis method was employed to estimate the dq-axes inductances, the induced voltage and torque ripple waveforms, and losses of the machine. A method for minimum effort calculation of the torque angle corresponding to the maximum torque per ampere load condition was developed. A differential evolution algorithm was implemented for the global design optimization with two concurrent objectives of minimum losses and minimum material cost. An engineering decision process based on …


Fault-Tolerant Operation Of Delta-Connected Scalar- And Vector-Controlled Ac Motor Drives, Ahmed Mohamed Sayed Ahmed, Nabeel Demerdash Jun 2012

Fault-Tolerant Operation Of Delta-Connected Scalar- And Vector-Controlled Ac Motor Drives, Ahmed Mohamed Sayed Ahmed, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

Operation and analysis of delta-connected ac motor-drive systems under fault-tolerant open-phase mode of operation is introduced in this paper for both scalar- and vector-controlled motor-drive systems. This technique enables the operation of the three-phase motor upon a failure in one of its phases without the need of a special fault-detection algorithm. It is mainly used to significantly mitigate torque pulsations, which are caused by an open-delta configuration in the stator windings. The performance of the fault-tolerant system was verified using a detailed time stepping finite element simulation as well experimental tests for a 5-hp 460-V induction motor-drive system and the …


Fault-Tolerant Technique For Δ-Connected Ac-Motor Drives, Ahmed Mohamed Sayed Ahmed, Behrooz Mirafzal, Nabeel Demerdash Jun 2011

Fault-Tolerant Technique For Δ-Connected Ac-Motor Drives, Ahmed Mohamed Sayed Ahmed, Behrooz Mirafzal, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

A fault-tolerant technique for motor-drive systems is introduced in this paper. The technique is merely presented for ac motors with Δ-connected circuits in their stator windings. In this technique, the faulty phase is isolated by solid-state switches after the occurrence of a failure in one of the stator phases. Then, the fault-tolerant technique manages current-flow in the remaining healthy phases. This technique is to significantly mitigate torque pulsations, which are caused by an open-Δ configuration in the stator windings. The performance of the fault-tolerant technique was experimentally verified using a 5-hp 460-V induction motor-drive system and the results are presented …