Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Electrical and Computer Engineering Faculty Research & Creative Works

Optimal Control

Articles 31 - 38 of 38

Full-Text Articles in Engineering

Adaptive Critic Design Based Neurocontroller For A Statcom Connected To A Power System, Salman Mohagheghi, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2003

Adaptive Critic Design Based Neurocontroller For A Statcom Connected To A Power System, Salman Mohagheghi, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

A novel nonlinear optimal neurocontroller for a static compensator (STATCOM) connected to a power system using artificial neural networks is presented in this paper. The heuristic dynamic programming (HDP), a member of the adaptive critic designs (ACDs) family, is used for the design of the STATCOM neurocontroller. This neurocontroller provides nonlinear optimal control with better performance compared to the conventional PI controllers.


Adaptive Critic Designs And Their Implementations On Different Neural Network Architectures, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2003

Adaptive Critic Designs And Their Implementations On Different Neural Network Architectures, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

The design of nonlinear optimal neurocontrollers based on the Adaptive Critic Designs (ACDs) family of algorithms has recently attracted interest. This paper presents a summary of these algorithms, and compares their performance when implemented on two different types of artificial neural networks, namely the multilayer perceptron neural network (MLPNN) and the radial basis function neural network (RBFNN). As an example for the application of the ACDs, the control of synchronous generator on an electric power grid is considered and results are presented to compare the different ACD family members and their implementations on different neural network architectures.


Adaptive Critic Based Optimal Neurocontrol For Synchronous Generator In Power System Using Mlp/Rbf Neural Networks, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley Jan 2002

Adaptive Critic Based Optimal Neurocontrol For Synchronous Generator In Power System Using Mlp/Rbf Neural Networks, Jung-Wook Park, Ganesh K. Venayagamoorthy, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a novel optimal neurocontroller that replaces the conventional controller (CONVC),which consists of the automatic voltage regulator (AVR) and turbine governor, to control a synchronous generator in a power system using a multilayer perceptron neural network (MLPN) and a radial basis function neural network (RBFN). The heuristic dynamic programming (HDP) based on the adaptive critic design (ACD) technique is used for the design of the neurocontroller. The performance of the MLPN based HDP neurocontroller (MHDPC) is compared with the RBFN based HDP neurocontroller (RHDPC) for small as well as large disturbances to a power system, and they are …


Comparison Of Heuristic Dynamic Programming And Dual Heuristic Programming Adaptive Critics For Neurocontrol Of A Turbogenerator, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2002

Comparison Of Heuristic Dynamic Programming And Dual Heuristic Programming Adaptive Critics For Neurocontrol Of A Turbogenerator, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents the design of an optimal neurocontroller that replaces the conventional automatic voltage regulator (AVR) and the turbine governor for a turbogenerator connected to the power grid. The neurocontroller design uses a novel technique based on the adaptive critic designs (ACDs), specifically on heuristic dynamic programming (HDP) and dual heuristic programming (DHP). Results show that both neurocontrollers are robust, but that DHP outperforms HDP or conventional controllers, especially when the system conditions and configuration change. This paper also shows how to design optimal neurocontrollers for nonlinear systems, such as turbogenerators, without having to do continually online training of …


Dual Heuristic Programming Excitation Neurocontrol For Generators In A Multimachine Power System, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2001

Dual Heuristic Programming Excitation Neurocontrol For Generators In A Multimachine Power System, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

The design of optimal neurocontrollers that replace the conventional automatic voltage regulators for excitation control of turbogenerators in a multimachine power system is presented in this paper. The neurocontroller design is based on dual heuristic programming (DHP), a powerful adaptive critic technique. The feedback variables are completely based on local measurements from the generators. Simulations on a three-machine power system demonstrate that DHP based neurocontrol is much more effective than the conventional PID control for improving dynamic performance and stability of the power grid under small and large disturbances. This paper also shows how to design optimal multiple neurocontrollers for …


A Nonlinear Voltage Controller With Derivative Adaptive Critics For Multimachine Power Systems, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley Jan 2001

A Nonlinear Voltage Controller With Derivative Adaptive Critics For Multimachine Power Systems, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Ronald G. Harley

Electrical and Computer Engineering Faculty Research & Creative Works

Based on derivative adaptive critics, a novel nonlinear optimal voltage/excitation control for a multimachine power system is presented. The feedback variables are completely based on local measurements. Simulations on a three-machine system demonstrate that the nonlinear controller is much more effective than the conventional PID controller equipped with a power system stabilizer for improving dynamic performance and stability under small and large disturbances.


Robust Control Of Input Limited Smart Structural Systems, Sridhar Sana, Vittal S. Rao Jan 2001

Robust Control Of Input Limited Smart Structural Systems, Sridhar Sana, Vittal S. Rao

Electrical and Computer Engineering Faculty Research & Creative Works

Integration of controllers with smart structural systems require the controllers to consume less power and to be small in hardware size. These requirements pose as limits on the control input and the order of the controllers. Use of reduced order model of the plant in the controller design can cause spill over problems in the closed-loop system due to possible excitation of the unmodeled dynamics. In this paper, we present a method to design output feedback robust controllers for smart structures in the presence of control input limits considering unmodeled dynamics as additive uncertainty in the design. The performance requirements …


Adaptive Critic Designs, Danil V. Prokhorov, Donald C. Wunsch Sep 1997

Adaptive Critic Designs, Danil V. Prokhorov, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

We discuss a variety of adaptive critic designs (ACDs) for neurocontrol. These are suitable for learning in noisy, nonlinear, and nonstationary environments. They have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Our discussion of these origins leads to an explanation of three design families: heuristic dynamic programming, dual heuristic programming, and globalized dual heuristic programming (GDHP). The main emphasis is on DHP and GDHP as advanced ACDs. We suggest two new modifications of the original GDHP design that are currently the only working implementations of GDHP. They promise to be useful for many engineering applications …