Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Boise State University

2013

Materials Science

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Multiscaffold Dna Origami Nanoparticle Waveguides, William P. Klein, Charles N. Schmidt, Blake Rapp, Sadao Takabayashi, William B. Knowlton, Jeunghoon Lee, Bernard Yurke, William L. Hughes, Elton Graugnard, Wan Kuang Aug 2013

Multiscaffold Dna Origami Nanoparticle Waveguides, William P. Klein, Charles N. Schmidt, Blake Rapp, Sadao Takabayashi, William B. Knowlton, Jeunghoon Lee, Bernard Yurke, William L. Hughes, Elton Graugnard, Wan Kuang

Electrical and Computer Engineering Faculty Publications and Presentations

DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry.


Reconfigurable Threshold Logic Gates Using Memristive Devices, Adrian Rothenbuhler, Thanh Tran, Elisa H. Barney Smith, Vishal Saxena, Kristy A. Campbell Jun 2013

Reconfigurable Threshold Logic Gates Using Memristive Devices, Adrian Rothenbuhler, Thanh Tran, Elisa H. Barney Smith, Vishal Saxena, Kristy A. Campbell

Electrical and Computer Engineering Faculty Publications and Presentations

We present our design exploration of reconfigurable Threshold Logic Gates (TLG) implemented using silver–chalcogenide memristive devices combined with CMOS circuits. Results from simulations and physical circuits are shown. A variety of linearly separable logic functions including AND, OR, NAND, NOR have been realized in discrete hardware using a single-layer TLG. The functionality can be changed between these operations by reprogramming the resistance of the memristive devices.