Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Multiscaffold Dna Origami Nanoparticle Waveguides, William P. Klein, Charles N. Schmidt, Blake Rapp, Sadao Takabayashi, William B. Knowlton, Jeunghoon Lee, Bernard Yurke, William L. Hughes, Elton Graugnard, Wan Kuang Aug 2013

Multiscaffold Dna Origami Nanoparticle Waveguides, William P. Klein, Charles N. Schmidt, Blake Rapp, Sadao Takabayashi, William B. Knowlton, Jeunghoon Lee, Bernard Yurke, William L. Hughes, Elton Graugnard, Wan Kuang

Electrical and Computer Engineering Faculty Publications and Presentations

DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry.


Reconfigurable Threshold Logic Gates Using Memristive Devices, Adrian Rothenbuhler, Thanh Tran, Elisa H. Barney Smith, Vishal Saxena, Kristy A. Campbell Jun 2013

Reconfigurable Threshold Logic Gates Using Memristive Devices, Adrian Rothenbuhler, Thanh Tran, Elisa H. Barney Smith, Vishal Saxena, Kristy A. Campbell

Electrical and Computer Engineering Faculty Publications and Presentations

We present our design exploration of reconfigurable Threshold Logic Gates (TLG) implemented using silver–chalcogenide memristive devices combined with CMOS circuits. Results from simulations and physical circuits are shown. A variety of linearly separable logic functions including AND, OR, NAND, NOR have been realized in discrete hardware using a single-layer TLG. The functionality can be changed between these operations by reprogramming the resistance of the memristive devices.


Compositional Tuning Of Structural Stability Of Lithiated Cubic Titania Via A Vacancy-Filling Mechanism Under High Pressure, Hui Xiong Feb 2013

Compositional Tuning Of Structural Stability Of Lithiated Cubic Titania Via A Vacancy-Filling Mechanism Under High Pressure, Hui Xiong

Materials Science and Engineering Faculty Publications and Presentations

Experimental and theoretical studies on the compositional dependence of stability and compressibility in lithiated cubic titania are presented. The crystalline-to-amorphous phase transition pressure increases monotonically with Li concentration (from ∼17.5  GPa for delithiated to no phase transition for fully lithiated cubic titania up to 60 GPa). The associated enhancement in structural stability is postulated to arise from a vacancy filling mechanism in which an applied pressure drives interstitial Li ions to vacancy sites in the oxide interior. The results are of significance for understanding mechanisms of structural response of metal oxide electrode materials at high pressures as well as emerging …