Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Multiscale Topology Optimization With A Strong Dependence On Complementary Energy, Dustin Dean Bielecki Dec 2022

Multiscale Topology Optimization With A Strong Dependence On Complementary Energy, Dustin Dean Bielecki

All Dissertations

A discrete approach introduces a novel deep learning approach for generating fine resolution structures that preserve all the information from the topology optimization (TO). The proposed approach utilizes neural networks (NNs) that map the desired engineering properties to seed for determining optimized structure. This framework relies on utilizing parameters such as density and nodal deflections to predict optimized topologies. A three-stage NN framework is employed for the discrete approach to reduce computational runtime while maintaining physics constraints.

A continuous representation that uses complementary energy (CE) methods to solve a representative element's homogenized properties consists of an embedded structure that is …


Generative Designs Of Lightweight Air-Cooled Heat Exchangers, Connor Miller May 2022

Generative Designs Of Lightweight Air-Cooled Heat Exchangers, Connor Miller

Mechanical Engineering Undergraduate Honors Theses

The development of high-performance air-cooled heat exchangers is required to permit the rapid growth of vehicle and aircraft electrification. In electric vehicles and airliners, the motors and power electronics are integrated into a compact space, leading to unprecedently high power density. To achieve higher overall thermal efficiency, the heat exchangers must be extremely light while maintaining their heat transfer performance and mechanical robustness. Recently advances in 3D metal printing, e.g., direct metal laser sintering, and selective laser melting, have enabled the manufacturing of high-performance robust heat exchangers by eliminating thermal boundary resistance and ensuring a uniform thermal expansion coefficient. Nonetheless, …


Molecular Modeling Of High-Performance Thermoset Polymer Matrix Composites For Aerospace Applications, Prathamesh P. Deshpande Jan 2022

Molecular Modeling Of High-Performance Thermoset Polymer Matrix Composites For Aerospace Applications, Prathamesh P. Deshpande

Dissertations, Master's Theses and Master's Reports

The global efforts from major space agencies to transport humans to Mars will require a novel lightweight and ultra-high strength material for the spacecraft structure. Three decades of research with the carbon nanotubes (CNTs) have proved that the material can be an ideal candidate for the composite reinforcement if certain shortcomings are overcome. Also, the rapid development of the polymer resin industry has introduced a wide range of high-performance resins that show high compatibility with the graphitic surface of the CNTs. This research explores the computational design of these materials and evaluates their efficacy as the next generation of aerospace …


Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo Dec 2021

Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo

Graduate Theses and Dissertations

The understanding of bubble dynamics during boiling is critical to the design of advanced heater surfaces to improve the boiling heat transfer. The stochastic bubble nucleation, growth, and coalescence processes have made it challenging to obtain mechanistic models that can predict boiling heat flux based on the bubble dynamics. Traditional boiling image analysis relies on the extraction of the dominant physical quantities from the images and is thus limited to the existing knowledge of these quantities. Recently, machine-learning-aided analysis has shown success in boiling crisis detection, heat flux prediction, real-time image analysis, etc., whereas most of the existing studies are …


Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen Aug 2021

Laser Surface Treatment And Laser Powder Bed Fusion Additive Manufacturing Study Using Custom Designed 3d Printer And The Application Of Machine Learning In Materials Science, Hao Wen

LSU Doctoral Dissertations

Selective Laser Melting (SLM) is a laser powder bed fusion (L-PBF) based additive manufacturing (AM) method, which uses a laser beam to melt the selected areas of the metal powder bed. A customized SLM 3D printer that can handle a small quantity of metal powders was built in the lab to achieve versatile research purposes. The hardware design, electrical diagrams, and software functions are introduced in Chapter 2. Several laser surface engineering and SLM experiments were conducted using this customized machine which showed the functionality of the machine and some prospective fields that this machine can be utilized. Chapter 3 …


Evolution Of Mg Az31 Twin Activation With Strain: A Machine Learning Study, Andrew D. Orme Apr 2018

Evolution Of Mg Az31 Twin Activation With Strain: A Machine Learning Study, Andrew D. Orme

Undergraduate Honors Theses

Machine learning is being adopted in various areas of materials science to both create predictive models and to uncover correlations which reveal underlying physics. However, these two aims are often at odds with each other since the resultant predictive models generally become so complex that they can essentially be described as a black box, making them difficult to understand. In this study, complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain. Supervised machine learning is employed, in the form of J-48 decision trees. In one approach, strain is incorporated as an …