Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

Series

2022

Institution
Keyword
Publication

Articles 181 - 196 of 196

Full-Text Articles in Engineering

The State Of The Art Of Information Integration In Space Applications, Zhuming Bi, K. L. Yung, Andrew W.H. Ip., Yuk Ming Tang, Chris W.J. Zhang, Li Da Xu Jan 2022

The State Of The Art Of Information Integration In Space Applications, Zhuming Bi, K. L. Yung, Andrew W.H. Ip., Yuk Ming Tang, Chris W.J. Zhang, Li Da Xu

Information Technology & Decision Sciences Faculty Publications

This paper aims to present a comprehensive survey on information integration (II) in space informatics. With an ever-increasing scale and dynamics of complex space systems, II has become essential in dealing with the complexity, changes, dynamics, and uncertainties of space systems. The applications of space II (SII) require addressing some distinctive functional requirements (FRs) of heterogeneity, networking, communication, security, latency, and resilience; while limited works are available to examine recent advances of SII thoroughly. This survey helps to gain the understanding of the state of the art of SII in sense that (1) technical drivers for SII are discussed and …


Deeppose: Detecting Gps Spoofing Attack Via Deep Recurrent Neural Network, Peng Jiang, Hongyi Wu, Chunsheng Xin Jan 2022

Deeppose: Detecting Gps Spoofing Attack Via Deep Recurrent Neural Network, Peng Jiang, Hongyi Wu, Chunsheng Xin

Electrical & Computer Engineering Faculty Publications

The Global Positioning System (GPS) has become a foundation for most location-based services and navigation systems, such as autonomous vehicles, drones, ships, and wearable devices. However, it is a challenge to verify if the reported geographic locations are valid due to various GPS spoofing tools. Pervasive tools, such as Fake GPS, Lockito, and software-defined radio, enable ordinary users to hijack and report fake GPS coordinates and cheat the monitoring server without being detected. Furthermore, it is also a challenge to get accurate sensor readings on mobile devices because of the high noise level introduced by commercial motion sensors. To this …


Security Hardening Of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks, Ferhat Ozgur Catak, Murat Kuzlu, Haolin Tang, Evren Catak, Yanxiao Zhao Jan 2022

Security Hardening Of Intelligent Reflecting Surfaces Against Adversarial Machine Learning Attacks, Ferhat Ozgur Catak, Murat Kuzlu, Haolin Tang, Evren Catak, Yanxiao Zhao

Engineering Technology Faculty Publications

Next-generation communication networks, also known as NextG or 5G and beyond, are the future data transmission systems that aim to connect a large amount of Internet of Things (IoT) devices, systems, applications, and consumers at high-speed data transmission and low latency. Fortunately, NextG networks can achieve these goals with advanced telecommunication, computing, and Artificial Intelligence (AI) technologies in the last decades and support a wide range of new applications. Among advanced technologies, AI has a significant and unique contribution to achieving these goals for beamforming, channel estimation, and Intelligent Reflecting Surfaces (IRS) applications of 5G and beyond networks. However, the …


Drivers’ Response To Scenarios When Driving Connected And Automated Vehicles Compared To Vehicles With And Without Driver Assist Technology, Srinivas S. Pulugurtha, Raghuveer Gouribhatla Jan 2022

Drivers’ Response To Scenarios When Driving Connected And Automated Vehicles Compared To Vehicles With And Without Driver Assist Technology, Srinivas S. Pulugurtha, Raghuveer Gouribhatla

Mineta Transportation Institute

Traffic related crashes cause more than 38,000 fatalities every year in the United States. They are the leading cause of death among drivers up to 54 years in age and incur $871 million in losses each year. Driver errors contribute to about 94% of these crashes. In response, automotive companies have been developing vehicles with advanced driver assistance systems (ADAS) that aid in various driving tasks. These features are aimed at enhancing safety by either warning drivers of a potential hazard or picking up certain driving maneuvers like maintaining the lane. These features are already part of vehicles with Driver …


Bitcoin Selfish Mining Modeling And Dependability Analysis, Chencheng Zhou, Liudong Xing, Jun Guo, Qisi Liu Jan 2022

Bitcoin Selfish Mining Modeling And Dependability Analysis, Chencheng Zhou, Liudong Xing, Jun Guo, Qisi Liu

Electrical & Computer Engineering Faculty Publications

Blockchain technology has gained prominence over the last decade. Numerous achievements have been made regarding how this technology can be utilized in different aspects of the industry, market, and governmental departments. Due to the safety-critical and security-critical nature of their uses, it is pivotal to model the dependability of blockchain-based systems. In this study, we focus on Bitcoin, a blockchain-based peer-to-peer cryptocurrency system. A continuous-time Markov chain-based analytical method is put forward to model and quantify the dependability of the Bitcoin system under selfish mining attacks. Numerical results are provided to examine the influences of several key parameters related to …


Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification At Jefferson Laboratory, Lasitha Vidyaratne, Adam Carpenter, Tom Powers, Chris Tennant, Khan M. Iftekharuddin, Md. Monibor Rahman, Anna S. Shabalina Jan 2022

Deep Learning Based Superconducting Radio-Frequency Cavity Fault Classification At Jefferson Laboratory, Lasitha Vidyaratne, Adam Carpenter, Tom Powers, Chris Tennant, Khan M. Iftekharuddin, Md. Monibor Rahman, Anna S. Shabalina

Electrical & Computer Engineering Faculty Publications

This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating linac that utilizes 418 SRF cavities to accelerate electrons up to 12 GeV. Recent upgrades to CEBAF include installation of 11 new cryomodules (88 cavities) equipped with a low-level RF system that records RF time-series data from each cavity at the onset of an RF failure. Typically, subject matter experts (SME) analyze this data to determine the fault type and identify the cavity of …


Runtime Power Allocation Based On Multi-Gpu Utilization In Gamess, Masha Sosonkina, Vaibhav Sundriyal, Jorge Luis Galvez Vallejo Jan 2022

Runtime Power Allocation Based On Multi-Gpu Utilization In Gamess, Masha Sosonkina, Vaibhav Sundriyal, Jorge Luis Galvez Vallejo

Electrical & Computer Engineering Faculty Publications

To improve the power consumption of parallel applications at the runtime, modern processors provide frequency scaling and power limiting capabilities. In this work, a runtime strategy is proposed to maximize performance under a given power budget by distributing the available power according to the relative GPU utilization. Time series forecasting methods were used to develop workload prediction models that provide accurate prediction of GPU utilization during application execution. Experiments were performed on a multi-GPU computing platform DGX-1 equipped with eight NVIDIA V100 GPUs used for quantum chemistry calculations in the GAMESS package. For a limited power budget, the proposed strategy …


Effect Of Connection State & Transport/Application Protocol On The Machine Learning Outlier Detection Of Network Intrusions, George Yuchi [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Effect Of Connection State & Transport/Application Protocol On The Machine Learning Outlier Detection Of Network Intrusions, George Yuchi [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

The majority of cyber infiltration & exfiltration intrusions leave a network footprint, and due to the multi-faceted nature of detecting network intrusions, it is often difficult to detect. In this work a Zeek-processed PCAP dataset containing the metadata of 36,667 network packets was modeled with several machine learning algorithms to classify normal vs. anomalous network activity. Principal component analysis with a 10% contamination factor was used to identify anomalous behavior. Models were created using recursive feature elimination on logistic regression and XGBClassifier algorithms, and also using Bayesian and bandit optimization of neural network hyperparameters. These models were trained on a …


Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

Land-cover and land-use classification generates categories of terrestrial features, such as water or trees, which can be used to track how land is used. This work applies classical, ensemble and neural network machine learning algorithms to a multispectral remote sensing dataset containing 405,000 28x28 pixel image patches in 4 electromagnetic frequency bands. For each algorithm, model metrics and prediction execution time were evaluated, resulting in two families of models; fast and precise. The prediction time for an 81,000-patch group of predictions wasmodels, and >5s for the precise models, and there was not a significant change in prediction time when a …


Towards An Instant Structure-Property Prediction Quality Control Tool For Additive Manufactured Steel Using A Crystal Plasticity Trained Deep Learning Surrogate, Yuhui Tu, Zhongzhou Liu, Luiz Carneiro, Caitriona M. Ryan, Andrew C. Parnell, Sean B. Leen Jan 2022

Towards An Instant Structure-Property Prediction Quality Control Tool For Additive Manufactured Steel Using A Crystal Plasticity Trained Deep Learning Surrogate, Yuhui Tu, Zhongzhou Liu, Luiz Carneiro, Caitriona M. Ryan, Andrew C. Parnell, Sean B. Leen

Research Collection School Of Computing and Information Systems

The ability to conduct in-situ real-time process-structure-property checks has the potential to overcome process and material uncertainties, which are key obstacles to improved uptake of metal powder bed fusion in industry. Efforts are underway for live process monitoring such as thermal and image-based data gathering for every layer printed. Current crystal plasticity finite element (CPFE) modelling is capable of predicting the associated strength based on a microstructural image and material data but is computationally expensive. This work utilizes a large database of input–output samples from CPFE modelling to develop a trained deep neural network (DNN) model which instantly estimates the …


Spectrum Sensing With Energy Detection In Multiple Alternating Time Slots, Călin Vlădeanu, Alexandru Marţian, Dimitrie C. Popescu Jan 2022

Spectrum Sensing With Energy Detection In Multiple Alternating Time Slots, Călin Vlădeanu, Alexandru Marţian, Dimitrie C. Popescu

Electrical & Computer Engineering Faculty Publications

Energy detection (ED) represents a low complexity approach used by secondary users (SU) to sense spectrum occupancy by primary users (PU) in cognitive radio (CR) systems. In this paper, we present a new algorithm that senses the spectrum occupancy by performing ED in K consecutive sensing time slots starting from the current slot and continuing by alternating before and after the current slot. We consider a PU traffic model specified in terms of an average duty cycle value, and derive analytical expressions for the false alarm probability (FAP) and correct detection probability (CDP) for any value of K . Our …


"Mystify": A Proactive Moving-Target Defense For A Resilient Sdn Controller In Software Defined Cps, Mohamed Azab, Mohamed Samir, Effat Samir Jan 2022

"Mystify": A Proactive Moving-Target Defense For A Resilient Sdn Controller In Software Defined Cps, Mohamed Azab, Mohamed Samir, Effat Samir

Electrical & Computer Engineering Faculty Publications

The recent devastating mission Cyber–Physical System (CPS) attacks, failures, and the desperate need to scale and to dynamically adapt to changes, revolutionized traditional CPS to what we name as Software Defined CPS (SD-CPS). SD-CPS embraces the concept of Software Defined (SD) everything where CPS infrastructure is more elastic, dynamically adaptable and online-programmable. However, in SD-CPS, the threat became more immanent, as the long-been physically-protected assets are now programmatically accessible to cyber attackers. In SD-CPSs, a network failure hinders the entire functionality of the system. In this paper, we present MystifY, a spatiotemporal runtime diversification for Moving-Target Defense (MTD) to secure …


A Channel State Information Based Virtual Mac Spoofing Detector, Peng Jiang, Hongyi Wu, Chunsheng Xin Jan 2022

A Channel State Information Based Virtual Mac Spoofing Detector, Peng Jiang, Hongyi Wu, Chunsheng Xin

Electrical & Computer Engineering Faculty Publications

Physical layer security has attracted lots of attention with the expansion of wireless devices to the edge networks in recent years. Due to limited authentication mechanisms, MAC spoofing attack, also known as the identity attack, threatens wireless systems. In this paper, we study a new type of MAC spoofing attack, the virtual MAC spoofing attack, in a tight environment with strong spatial similarities, which can create multiple counterfeits entities powered by the virtualization technologies to interrupt regular services. We develop a system to effectively detect such virtual MAC spoofing attacks via the deep learning method as a countermeasure. …


Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li Jan 2022

Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li

Electrical & Computer Engineering Faculty Publications

Different satellite images may consist of variable numbers of channels which have different resolutions, and each satellite has a unique revisit period. For example, the Landsat-8 satellite images have 30 m resolution in their multispectral channels, the Sentinel-2 satellite images have 10 m resolution in the pan-sharp channel, and the National Agriculture Imagery Program (NAIP) aerial images have 1 m resolution. In this study, we propose a simple yet effective arithmetic deep model for multimodal temporal remote sensing image fusion. The proposed model takes both low- and high-resolution remote sensing images at t1 together with low-resolution images at a …


Facial Landmark Feature Fusion In Transfer Learning Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Norou Diawara, Khan M. Iftekharuddin Jan 2022

Facial Landmark Feature Fusion In Transfer Learning Of Child Facial Expressions, Megan A. Witherow, Manar D. Samad, Norou Diawara, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Automatic classification of child facial expressions is challenging due to the scarcity of image samples with annotations. Transfer learning of deep convolutional neural networks (CNNs), pretrained on adult facial expressions, can be effectively finetuned for child facial expression classification using limited facial images of children. Recent work inspired by facial age estimation and age-invariant face recognition proposes a fusion of facial landmark features with deep representation learning to augment facial expression classification performance. We hypothesize that deep transfer learning of child facial expressions may also benefit from fusing facial landmark features. Our proposed model architecture integrates two input branches: a …


Qu-Brats: Miccai Brats 2020 Challenge On Quantifying Uncertainty In Brain Tumor Segmentation - Analysis Of Ranking Scores And Benchmarking Results, Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard Mckinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-Han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-Min Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh Mchugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicholas Boutry, Alexis Huard, Lasitha Vidyaratne, Md. Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel Jan 2022

Qu-Brats: Miccai Brats 2020 Challenge On Quantifying Uncertainty In Brain Tumor Segmentation - Analysis Of Ranking Scores And Benchmarking Results, Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard Mckinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-Han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-Min Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh Mchugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicholas Boutry, Alexis Huard, Lasitha Vidyaratne, Md. Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

Electrical & Computer Engineering Faculty Publications

Deep learning (DL) models have provided the state-of-the-art performance in a wide variety of medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder the translation of DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties, could enable clinical review of the most uncertain regions, thereby building trust and paving the way towards clinical translation. Recently, a number of uncertainty estimation methods have been introduced for DL medical image segmentation tasks. …