Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 37 of 37

Full-Text Articles in Engineering

An Improved Algorithm For Learning To Perform Exception-Tolerant Abduction, Mengxue Zhang May 2017

An Improved Algorithm For Learning To Perform Exception-Tolerant Abduction, Mengxue Zhang

McKelvey School of Engineering Theses & Dissertations

Abstract

Inference from an observed or hypothesized condition to a plausible cause or explanation for this condition is known as abduction. For many tasks, the acquisition of the necessary knowledge by machine learning has been widely found to be highly effective. However, the semantics of learned knowledge are weaker than the usual classical semantics, and this necessitates new formulations of many tasks. We focus on a recently introduced formulation of the abductive inference task that is thus adapted to the semantics of machine learning. A key problem is that we cannot expect that our causes or explanations will be perfect, …


Indoor Scene Localization To Fight Sex Trafficking In Hotels, Abigail Stylianou Dec 2016

Indoor Scene Localization To Fight Sex Trafficking In Hotels, Abigail Stylianou

McKelvey School of Engineering Theses & Dissertations

Images are key to fighting sex trafficking. They are: (a) used to advertise for sex services,(b) shared among criminal networks, and (c) connect a person in an image to the place where the image was taken. This work explores the ability to link images to indoor places in order to support the investigation and prosecution of sex trafficking. We propose and develop a framework that includes a database of open-source information available on the Internet, a crowd-sourcing approach to gathering additional images, and explore a variety of matching approaches based both on hand-tuned features such as SIFT and learned features …


Bayesian Networks To Assess The Newborn Stool Microbiome, William E. Bennett Jr. Aug 2016

Bayesian Networks To Assess The Newborn Stool Microbiome, William E. Bennett Jr.

McKelvey School of Engineering Theses & Dissertations

In human stool, a large population of bacterial genes and transcripts from hundreds of genera coexist with host genes and transcripts. Assessments of the metagenome and transcriptome are particularly challenging, since there is a great deal of sequence overlap among related species and related genes. We sequenced the total RNA content from stool samples in a neonate using previously-described methods. We then performed stepwise alignment of different populations of RNA sequence reads to different indices, including ribosomal databases, the human genome, and all sequenced bacterial genomes. Each pool of RNA at each alignment step was subjected to compression to assess …


Visualization Of Deep Convolutional Neural Networks, Dingwen Li May 2016

Visualization Of Deep Convolutional Neural Networks, Dingwen Li

McKelvey School of Engineering Theses & Dissertations

Deep learning has achieved great accuracy in large scale image classification and scene recognition tasks, especially after the Convolutional Neural Network (CNN) model was introduced. Although a CNN often demonstrates very good classification results, it is usually unclear how or why a classification result is achieved. The objective of this thesis is to explore several existing visualization approaches which offer intuitive visual results. The thesis focuses on three visualization approaches: (1) image masking which highlights the region of image with high influence on the classification, (2) Taylor decomposition back-propagation which generates a per pixel heat map that describes each pixel's …


Revelation Of Yin-Yang Balance In Microbial Cell Factories By Data Mining, Flux Modeling, And Metabolic Engineering, Gang Wu May 2016

Revelation Of Yin-Yang Balance In Microbial Cell Factories By Data Mining, Flux Modeling, And Metabolic Engineering, Gang Wu

McKelvey School of Engineering Theses & Dissertations

The long-held assumption of never-ending rapid growth in biotechnology and especially in synthetic biology has been recently questioned, due to lack of substantial return of investment. One of the main reasons for failures in synthetic biology and metabolic engineering is the metabolic burdens that result in resource losses. Metabolic burden is defined as the portion of a host cells resources either energy molecules (e.g., NADH, NADPH and ATP) or carbon building blocks (e.g., amino acids) that is used to maintain the engineered components (e.g., pathways). As a result, the effectiveness of synthetic biology tools heavily dependents on cell capability to …


Applying Bayesian Machine Learning Methods To Theoretical Surface Science, Shane Carr Dec 2015

Applying Bayesian Machine Learning Methods To Theoretical Surface Science, Shane Carr

McKelvey School of Engineering Theses & Dissertations

Machine learning is a rapidly evolving field in computer science with increasingly many applications to other domains. In this thesis, I present a Bayesian machine learning approach to solving a problem in theoretical surface science: calculating the preferred active site on a catalyst surface for a given adsorbate molecule. I formulate the problem as a low-dimensional objective function. I show how the objective function can be approximated into a certain confidence interval using just one iteration of the self-consistent field (SCF) loop in density functional theory (DFT). I then use Bayesian optimization to perform a global search for the solution. …


Global Edf Scheduling For Parallel Real-Time Tasks, Jing Li May 2014

Global Edf Scheduling For Parallel Real-Time Tasks, Jing Li

McKelvey School of Engineering Theses & Dissertations

As multicore processors become ever more prevalent, it is important for real-time programs to take advantage of intra-task parallelism in order to support computation-intensive applications with tight deadlines. In this thesis, we consider the Global Earliest Deadline First (GEDF) scheduling policy for task sets consisting of parallel tasks. Each task can be represented by a directed acyclic graph (DAG) where nodes represent computational work and edges represent dependences between nodes. In this model, we prove that GEDF provides a capacity augmentation bound of 4-2/m and a resource augmentation bound of 2-1/m. The capacity augmentation bound acts as a linear-time schedulability …