Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 63

Full-Text Articles in Engineering

Copper-Based Compounds For Electrochemical Reduction Of Carbon Dioxide, Fan Yang, Pei-Lin Deng, You-Jia Han, Pan Jing, Bao-Yu Xia Aug 2019

Copper-Based Compounds For Electrochemical Reduction Of Carbon Dioxide, Fan Yang, Pei-Lin Deng, You-Jia Han, Pan Jing, Bao-Yu Xia

Journal of Electrochemistry

The electrochemical reduction of carbon dioxide (CO2) to useful chemicals and fuels has attracted enormous interest since the deteriorating global warming and energy shortage problems resulted from ever-increasing CO2 emission. Designing efficient catalysts is of capital significance to realize the efficient and selective conversion of CO2. Among various catalysts explored, copper-based compounds have promising potentials with acceptable efficiency for hydrocarbon production. Herein, recent advances on copper-based materials are summarized for electrochemical CO2 conversion. We intend to include the dimensional structure, different forms (alloy, oxide) and molecular catalysts in copper-based catalysts. Moreover, the reaction mechanisms …


Recent Advances In Bismuth-Based Co2 Reduction Electrocatalysts, Rui Zhou, Na Han, Yan-Guang Li Aug 2019

Recent Advances In Bismuth-Based Co2 Reduction Electrocatalysts, Rui Zhou, Na Han, Yan-Guang Li

Journal of Electrochemistry

Carbon dioxide (CO2) is an economical, secure and sustainable carbon resource around us. Its effective capture and recycling have been the focus of our entire society. Using the electrochemical method, CO2 can be reduced to different value-added chemicals or fuels. This approach not only would mitigate CO2 accumulation in the atmosphere, but also would help alleviate our dependence on fossil fuel. In this article, the basic principle and process of electrochemical CO2 reduction are first introduced. The recent development in bismuth-based catalysts for electrocatalytic CO2 reduction is reviewed with an emphasis on their preparation, …


Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang Aug 2019

Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang

Journal of Electrochemistry

A large-scale application of fossil fuels has led to excessive emission of carbon dioxide (CO2), resulting in serious environmental issues. A promising path to reducing CO2 emissions is recycling CO2 into valuable chemicals and fuels through an electrochemical process. Herein, the redox reactions between copper (Cu) and ferric chloride (FeCl3) have been utilized to regulate the Cu surface composition and structure, aimed to improve the electrocatalytic activity toward CO2 reduction. Typically, a series of samples (named Cu-1h, Cu-2h, Cu-3h and Cu-4h) were prepared via the redox reactions for various time from 1 to …


Electrochemical Detection Of 4-Nitrophenol Based On Glassy Carbon Electrode Modified By Tio2Nps/Rgo Composite, Lin-Na Jiu, Yong-Qiang Cheng Aug 2019

Electrochemical Detection Of 4-Nitrophenol Based On Glassy Carbon Electrode Modified By Tio2Nps/Rgo Composite, Lin-Na Jiu, Yong-Qiang Cheng

Journal of Electrochemistry

4-nitrophenol (4-NP) has become factitious pollution, and presented a serious threat to the nature and human health. It is necessary to develop a convenient and fast detection method. In this work, the glassy carbon electrode modified by titanium dioxide nanoparticles (TiO2NPs)/reduced graphene oxide (RGO) composite as an electrochemical sensor was studied for the trace detection of 4-NP. The morphology of the composite was characterized by scanning electron microscopy (SEM). The homogeneous mixing of titanium dioxide nanoparticles and reduced graphene oxide increased the specific surface area of the composite, and facilitated the electrochemical reaction of 4-NP. The electrochemical characteristics …


Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu Aug 2019

Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu

Journal of Electrochemistry

Graphene nanosheets (GS) and carbon nanotubes have been considered as good catalysts candidates for applications in energy conversion and storage. However, hybrids of GS and carbon nanotubes are always formed in transition metal-based nitrogen-doped system, making the system quite complex for exploring the structure-activity relationship. To prepare the catalysts with desired species controllably, we try to adjust the outcomes with the effect of nitrogen on the growth of carbon nanotubes. In this work, a series of Fe-N co-doped carbon hybrid catalysts containing N-doped GS or hybrids of GS/bamboo carbon nanotubes (BCNTs) or BCNTs were obtained with one-step pyrolyzed method. To …


Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen Aug 2019

Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen

Journal of Electrochemistry

Efficient and low-cost oxygen reduction reaction (ORR) electrocatalyst plays a key role for fuel cells. In this paper, ORR active metal organic framework (MOF: Cu-bipy-BTC, bipy = 2,2?-bipyridine, BTC = 1,3,5-tricarboxylate) was prepared using hydrothermal method, and then carbon-based material MOF-800 was obtained from pyrolyzing Cu-bipy-BTC at 800 °C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption isotherm and X-ray photolectron spectroscopy (XPS) were used to characterize the morphologies and structures of the catalysts. Linear sweep voltammetry (LSV) and current-time curve (i-t) were adopted to evaluate the electrocatalytic properties of the catalysts. …


Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia Jun 2019

Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia

Journal of Electrochemistry

Nanofluidics, as a young research field, has been receiving more and more attentions. It has been successfully applied in various fields including nanoscale separation, biochemical sensing and energy conversion. The development of nanofluidics is closely related to electrochemistry that can provide a driving force for the study of the material transport characteristics in nanopores/nanochannels. On the other hand, nanopores/nanochannels can creat a microenvironment for study of spatially nanoconfined electrochemistry. The combination of nanofluidics and electrochemistry has given rise to many new theories and technologies for single molecule/particle analysis and nanofluid manipulation. Herein, we provide a review of the recent progresses …


Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li Jun 2019

Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li

Journal of Electrochemistry

Nanomaterials have shown many potential application prospects in the biomedical field, such as medical imaging, drug delivery and biosensing due to their unique physical and chemical properties. In this review we focus on nanomaterials that have shown not only abilities of radiation protection, but also good electrocatalytic activities toward reduction reactions of hydrogen peroxide and oxygen. We discuss the abilities of radiation protection of these nanomaterials that are ascribed to their enzyme-like activities because their catalytic properties provide an effective pathway for scavenging free radicals in vivo via rapid reactions with reactive oxygen species. We also provide insights into electrocatalytic …


A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long Jun 2019

A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long

Journal of Electrochemistry

Nanopore employs a single bio-molecule interface, which is a highly sensitive single-molecule detection technology for measuring single biomolecules such as DNA, RNA, protein, and peptide. The interaction between single molecule and nanopore is thermodynamically controlled. Therefore, it is urgent to precisely control the temperature of the nanopore system without introduction of any noise. In this paper, we have developed a low-noise temperature control system for single-molecule detection of nanopores to achieve precise regulation at the ambient temperature during measurements. The system utilizes the thermoelectric effect of the semiconductor refrigerating chip to heat or cool the detection chamber, while adopts electromagnetically …


Recent Progresses Of Enzymes Assembled In Nanochannels For Catalytic Reaction, Shangguan Li, Xu Xuan, Liu Song-Qin Jun 2019

Recent Progresses Of Enzymes Assembled In Nanochannels For Catalytic Reaction, Shangguan Li, Xu Xuan, Liu Song-Qin

Journal of Electrochemistry

The research of enzymes assembled and catalytic reaction not only is beneficial to exploit the essences of life’s activities, but also is significant in developing the practical application of enzymes in these areas including industrial production, analysis and detection, treatment of disease, etc. The effective immobilization and ordered assembly of enzymes are important methods for maintaining the catalytic activity, catalytic reaction stability and catalytic process controllability of enzymes. Among them, single or multi-enzymes are immobilized orderly in nanochannels that exhibit unique features and advantages, accordingly, the confinement effect of nanochannels can increase the selectivity and catalytic efficiency of enzymes through …


Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou Jun 2019

Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou

Journal of Electrochemistry

Single particle impact electrochemistry (SPIEC) has grown rapidly in recent years and shown great promise in the analysis of nanoparticle properties as well as the detection of biomolecules including DNA, RNA, protein, enzyme, bacteria, virus, vesicles and others. This minireview summarizes recent advances in electroanalytical applications of SPIEC according to different analytical methods, i.e., direct electrolysis of nanoparticles or labeled nanoparticles, direct electrolysis of soft particles encapsulated redox molecule, indirect electrochemistry of particles, area and diffusion blocking, and changes in current magnitude and collision frequency.


Correlated Optical Imaging And Electrochemical Recording For Studying Single Nanoparticle Collisions, Lin-Lin Sun, Wei Wang, Hong-Yuan Chen Jun 2019

Correlated Optical Imaging And Electrochemical Recording For Studying Single Nanoparticle Collisions, Lin-Lin Sun, Wei Wang, Hong-Yuan Chen

Journal of Electrochemistry

With the development of nano-fabrications in recent years, a novel strategy based on random collisions of single electroactive nanoparticles (NPs) onto an inert ultramicroelectrode (UME) has been emerged in the field of nanoelectrochemistry, and named as single nanoparticles collisions (SNCs). The technique uses a chronoamperometric method to detect transient current generated by random collisions of single NPs onto an UME. By analyzing the current signal, one could study the properties of single NPs. Although this technique can detect electrochemical or electrocatalytic currents of a single NP, the traditional SNCs technology lacks necessary spatial resolution to identify and characterize a specific …


Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated With CuXO Nanocomposites: A Novel Electrode Substrate For Non-Enzymatic Glucose Sensors, Wan-Lin Dai, Zhi-Wei Lu, Jian-Shan Ye Apr 2019

Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated With CuXO Nanocomposites: A Novel Electrode Substrate For Non-Enzymatic Glucose Sensors, Wan-Lin Dai, Zhi-Wei Lu, Jian-Shan Ye

Journal of Electrochemistry

In this work, a novel electrode substrate with graphene-like surface and CuxO nanocomposites derived from secondary-laser-etched polyimide (SLEPI) film was synthesized and applied in non-enzymatic glucose detection for the first time. Characterizations indicate that the as-prepared SLEPI/CuxO film electrode (SLEPI/CuxO-FE) possessed huge surface area, plentiful active sites and excellent electrocatalytic performance. The obtained sensor exhibited the high sensitivity and selectivity for glucose determination with a linear range of 0.05 mmol·L-1 to 3 mmol·L-1 and a detection limit of 1.72 μmol·L-1 (S/N=3), which provides a simple, flexible and low-cost electrochemical sensor for …


In Situ/Operando Visualization Of Electrode Processes In Lithium-Sulfur Batteries: A Review, Shuang-Yan Lang, Xin-Cheng Hu, Rui Wen, Li-Jun Wan Apr 2019

In Situ/Operando Visualization Of Electrode Processes In Lithium-Sulfur Batteries: A Review, Shuang-Yan Lang, Xin-Cheng Hu, Rui Wen, Li-Jun Wan

Journal of Electrochemistry

Lithium-sulfur (Li-S) batteries have been regarded as one of the most promising candidates for the next-generation energy storage devices. Fundamental understanding of the structure and evolution processes at electrode-electrolyte interfaces is essential to the further development. In this review, we summarize recent advances in the interfacial observations by means of various in situ/operando visualization techniques, including scanning probe microscopy (SPM), electron microscopy (EM), X-ray microscopy (XRM) and optical microscopy (OM). The real-time investigation provides important evidence for the morphology and component changes including S/Li2S transformation, polysulfide dissolution on cathodes and Li/solid electrolyte interphase (SEI) evolution on anodes, which …


Recent Progress Of Electrochemiluminescence Sensors Based On Electrically Heated Electrode, Hui-Fang Zhang, Yi-Ting Chen, Fang Luo, Zhen-Yu Lin, Guo-Nan Chen Apr 2019

Recent Progress Of Electrochemiluminescence Sensors Based On Electrically Heated Electrode, Hui-Fang Zhang, Yi-Ting Chen, Fang Luo, Zhen-Yu Lin, Guo-Nan Chen

Journal of Electrochemistry

Electrochemiluminescence (ECL) has broad application in the fields of environmental monitoring and biological analysis due to its intrinsic advantages such as excellent versatility, good detection sensitivity, and high specificity. The intensity of ECL can be influenced by temperature variation in the ECL quantum efficiency and the rate of electrochemical reaction. However, traditional temperature control is commonly realized through bulk solutions heating, which is complicated and unfavorable for detection when the volatile and thermally unstable materials existed. In order to address these problems, electrically heated electrodes are used to adjust the temperature desired. The major character of this technique lies in …


Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng Apr 2019

Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng

Journal of Electrochemistry

The development of low-cost, high-performance cathode catalysts is critical for practical application of fuel cells. Here, the N, P-doped porous graphene-like carbon with outstanding oxygen reduction reaction (ORR) performance was synthesized by pyrolysis of surplus sludge, which functioned as a self-doped, self-activated, and self-templated precursor by acclimation with continuous feedings of phenol. The results show that the amounts of microorganisms were enriched after acclimation, with increasing contents of N, P, Fe, as well as C atoms. The increasing pyrolysis temperature resulted in the formation of an ordered graphitic structure, however, the excessively high temperature induced the drop in the amounts …


Application Of Nanomaterials In The Detection Of Volatile Organic Compounds In Exhaled Breath For Cancer Diagnosis, Wan-Qiao Bai, Xue-Zhi Qiao, Tie Wang Apr 2019

Application Of Nanomaterials In The Detection Of Volatile Organic Compounds In Exhaled Breath For Cancer Diagnosis, Wan-Qiao Bai, Xue-Zhi Qiao, Tie Wang

Journal of Electrochemistry

Volatile organic compounds (VOCs) generated in human body can reflect one’s health state, and numerous diseases are identified by some VOCs biomarkers. More recently, analyses of VOCs biomarkers from exhaled breath have turned into a research frontier worldwide because it offers a noninvasive way for diseases diagnosis. Various kinds of nanomaterials are used to enhance the performance of sensing techniques, and play an essential role in miniaturization detection. In this review, several kinds of nanomaterials (metallic, metal oxide, carbon-based, composites and MOFs-based materials) used in various VOCs detection methods, especially in VOCs sensors are summarized. Learning from the successful utilization …


Surface-Enhanced Infrared Absorption Spectroscopy- Surface Sensitive In Situ Label-Free Spectroelectrochemistry, Lie Wu, Jian-Long Sun, Xiu-E Jiang Apr 2019

Surface-Enhanced Infrared Absorption Spectroscopy- Surface Sensitive In Situ Label-Free Spectroelectrochemistry, Lie Wu, Jian-Long Sun, Xiu-E Jiang

Journal of Electrochemistry

Surface-enhanced infrared absorption spectroscopy (SEIRAS), especially in attenuated total reflectance (ATR) mode, taking advantages of surface-enhancement and near-field optical effect of enhancing substrate, is a ultra-sensitive infrared spectroscopy, which could achieve surface-selected detection at a sub-monolayer level. Since the enhancing substrate could simultaneously serve as a working electrode, ATR-SEIRAS is a readily surface-sensitive in situ label-free spectroelectrochemistry technique. With the advantages of small influence from metal species on enhancement effect, good potential reversibility of spectra, simple surface selection rule and sensitivity to polar molecules, ATR-SEIRAS has been widely applied in the fields of orientation analysis and species identification of interfacial …


A Facile Strategy For Two-Step Fabrication Of Gold Nanoelectrode For In Vivo Dopamine Detection, Li-Hao Guan, Chao Wang, Wang Zhang, Yu-Lu Cai, Kai Li, Yu-Qing Lin Apr 2019

A Facile Strategy For Two-Step Fabrication Of Gold Nanoelectrode For In Vivo Dopamine Detection, Li-Hao Guan, Chao Wang, Wang Zhang, Yu-Lu Cai, Kai Li, Yu-Qing Lin

Journal of Electrochemistry

In vivo monitoring neurochemicals with microelectrode is invasive and the damage to brain tissue may inevitably cause disturbance signals physiologically to the measurement. It is of great importance to reduce the electrode size and to decrease the damage. This study demonstrates a novel nanoelectrode preparation methodology for in vivo monitoring dopamine (DA) fluctuation in the living brain of rats with high dependability. The fabrication process of the gold nanoelectrode involving a few minutes consists of only two steps: 1) growing gold nanoseeds on surface of tip of glassy capillary by ion sputtering; 2) wet depositing a continuous conductive gold film …


High-Efficiency Nitrite Sensor Based On Cop Nanowire Array, Fu-Ling Zhou, Xiao-Li Xiong, Xu-Ping Sun Apr 2019

High-Efficiency Nitrite Sensor Based On Cop Nanowire Array, Fu-Ling Zhou, Xiao-Li Xiong, Xu-Ping Sun

Journal of Electrochemistry

Nitrite has a negative impact on the environment and human health. The long-term consumption of nitrite-containing foods has a carcinogenic risk. Therefore, the analysis and detection of nitrite are important. It is of great significance to develop high-efficiency electrocatalysts to achieve high sensitivity and selectivity for nitrite detection. The cobalt phosphide nano-array (CoP/TM) was obtained by hydrothermal and low-temperature phosphating. The electrochemical test results show that the constructed CoP/TM was a highly efficient electrochemical reduction nitrite catalyst with the excellent sensing performance and response time less than 3 s, as well as the linear detection range of 1.0 μmol·L-1 …


Sensitive Photoelectrochemical Assay Of Nucleic Acids Based On Catalytic Hairpin Assembly And Ru(Nh3)63+, Ya-Min Fu, Xiao-Xia Yan, Xiao-Hua Zhang, Jin-Hua Chen Apr 2019

Sensitive Photoelectrochemical Assay Of Nucleic Acids Based On Catalytic Hairpin Assembly And Ru(Nh3)63+, Ya-Min Fu, Xiao-Xia Yan, Xiao-Hua Zhang, Jin-Hua Chen

Journal of Electrochemistry

A simple “signal-on” photoelectrochemical (PEC) sensing platform for sensitive assay of nucleic acids was developed by coupling catalytic hairpin assembly (CHA) signal amplification strategy with Ru(NH3)63+. Herein, cadmium sulfide (CdS) was deposited on the TiO2/indium tin oxide (ITO) electrode by a method of successive ionic layer adsorption and reaction (SILAR), serving as one kind of photoelectric material to broaden absorption range of TiO2 and to improve the photoelectric conversion efficiency. Thereafter, the capture DNA (C-DNA) was immobilized on the CdS/TiO2/ITO electrode. Simultaneously, Au-hairpin DNA probe 1 (Au-HP1) and hairpin DNA …


Preparation And Capacitive Property Of Two-Dimensional Multilayer Ti3C2TX-Mxene/Ppy-Nw Composite Material, Lu Chen, Xuan Jian, Min He, Mi-Mi Zhang, Xiao-Die Chen, Lou-Jun Gao, Zhen-Hai Liang Apr 2019

Preparation And Capacitive Property Of Two-Dimensional Multilayer Ti3C2TX-Mxene/Ppy-Nw Composite Material, Lu Chen, Xuan Jian, Min He, Mi-Mi Zhang, Xiao-Die Chen, Lou-Jun Gao, Zhen-Hai Liang

Journal of Electrochemistry

In this paper, the two-dimensional multilayered Ti3C2Tx-MXene was obtained by hydrofluoric acid etching method on the bulk phase material MAX(Ti3AlC2) substrate. The two-dimensional multilayered Ti3C2Tx-MXene/PPy-NW composite electrode materials were successfully prepared by combining the one-dimensional polypyrrole nanowires (PPy-NW) with two-dimensional multilayered Ti3C2Tx-MXene. The morphologies and compositions of the synthetic materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Electrochemical tests showed that Ti3C2 …


Recent Progress In Vanadium-Based Electrode Materials, Meng-Lei Sun, Da-Qi Zhang, Jin-Kui Feng, Jiang-Feng Ni Feb 2019

Recent Progress In Vanadium-Based Electrode Materials, Meng-Lei Sun, Da-Qi Zhang, Jin-Kui Feng, Jiang-Feng Ni

Journal of Electrochemistry

It is an important solution to solve energy storage problems by developing inexpensive and safe lithium-ion and sodium-ion batteries with superior performance. Vanadium-based electrode materials are promising electrode materials because of diversified chemical valences, open structures and high theoretical capacities. In the past few years, vanadium-based electrode materials such as oxides, sulfides, and phosphates have achieved a considerable development in the battery field, It is, therefore, necessary to summarize their recent research progress. In this review, we particularly highlight the key challenges that are facing in the application of vanadium materials, such as low ion diffusion coefficient and poor structural …


Recent Progress In Key Materials For Room-Temperature Sodium-Ion Batteries, Fan-Fan Wang, Xiao-Bin Liu, Long Chen, Cheng-Cheng Chen, Yong-Chang Liu, Li-Zhen Fan Feb 2019

Recent Progress In Key Materials For Room-Temperature Sodium-Ion Batteries, Fan-Fan Wang, Xiao-Bin Liu, Long Chen, Cheng-Cheng Chen, Yong-Chang Liu, Li-Zhen Fan

Journal of Electrochemistry

Sodium-ion batteries (SIBs) have attracted tremendous attention in large-scale energy storage applications due to their resource advantages. However, Na+ is larger and heavier than Li+, which will limit its reversible reaction with the electrode materials and result in poor electrochemical performance. Thus, developing stable and high-efficiency electrode materials is the key to promoting the practical application of SIBs. Furthermore, the optimization of electrolyte is essential for the construction of high-safety and long-lifespan SIBs. In this review, we mainly summarize the recent advancements of electrode materials and electrolytes for room-temperature SIBs and discuss their challenges and possible resolution strategies. We hope …


Synthesis Of Flower-Like Vanadium Disulfide For Lithium Storage Application, Pan Li, Jian Liu, Wei-Yi Sun, Hai-Xia Li, Zhan-Liang Tao Feb 2019

Synthesis Of Flower-Like Vanadium Disulfide For Lithium Storage Application, Pan Li, Jian Liu, Wei-Yi Sun, Hai-Xia Li, Zhan-Liang Tao

Journal of Electrochemistry

In order to improve the electrochemical properties of vanadium disulfide (VS2) as an electrode material in Li-ion battery, the flower-like VS2 was prepared by a one-step hydrothermal method with the addition of polyethylene glycol 400. The phase and morphology of the product were characterized by using X-ray diffraction and field emission scanning electron microscopy. During the growth process, it was observed that the flower-like VS2 was interspersed with several hexagonal vanadium disulfide nanosheets, which had a high specific surface area and excellent structural stability. The flower-like VS2 was used for the cathode material test in …


Ni/Mn3O4/Nimn2O4 Double-Shelled Hollow Spheres Embedded Into Reduced Graphene Oxide As Advanced Anodes For Sodium-Ion Batteries, Chong Yan, Hua-Ri Kou, Bo Yan, Xiao-Jing Liu, De-Jun Li, Xi-Fei Li Feb 2019

Ni/Mn3O4/Nimn2O4 Double-Shelled Hollow Spheres Embedded Into Reduced Graphene Oxide As Advanced Anodes For Sodium-Ion Batteries, Chong Yan, Hua-Ri Kou, Bo Yan, Xiao-Jing Liu, De-Jun Li, Xi-Fei Li

Journal of Electrochemistry

Delicately building the unique nanocomposite with the combination of hollow structure and reduced graphene oxide (rGO) is highly desirable and still remains a great challenge in the field of energy conversion and storage. In this work, Ni/Mn3O4/NiMn2O4 double-shelled hollow spheres coated by rGO (denoted as R-NMN) have been successfully synthetized via one-step rapid solvothermal treatment followed by subsequent annealing for the first time. Served as anodes for sodium ion batteries (SIBs), the R-NMN composite containing 25wt% rGO exhibits a high discharge capacity of 187.8 mAh·g-1 after 100 cycles at 50 mA·g-1 …


Current Status And Prospect Of Battery Configuration In Li-S System, Jia-Hang Chen, Hui-Jun Yang, Cheng Guo, Jiu-Lin Wang Feb 2019

Current Status And Prospect Of Battery Configuration In Li-S System, Jia-Hang Chen, Hui-Jun Yang, Cheng Guo, Jiu-Lin Wang

Journal of Electrochemistry

Commercial lithium-ion batteries (LIBs) are incapable of satisfying the increasing demand for emerging electronic devices due to their limited energy density. Among the next-generation batteries, lithium-sulfur (Li-S) batteries are becoming a promising energy-storage system due to their high theoretical energy density and natural abundance of sulfur. However, the shuttle of soluble polysulfide intermediates between two electrodes, as well as the problem on Li metal anode,lower the utilization of active material and lead to the loss of specific capacity and rapid capacity fading. All the above challenges limit the further application of Li-S batteries. Recently, various novel battery configurations have been …


Applications Of Advanced Imaging Technologies For Critical Issues Of All-Solid-State Lithium Battery Studies, Yi-Bo Zhao, Hui-Hui Liu, Song-Liang Chen, Shou-Hang Bo Feb 2019

Applications Of Advanced Imaging Technologies For Critical Issues Of All-Solid-State Lithium Battery Studies, Yi-Bo Zhao, Hui-Hui Liu, Song-Liang Chen, Shou-Hang Bo

Journal of Electrochemistry

All-solid-state lithium batteries have attracted much attention for their high energy density and good safety. To increase their efficiency and prolong their service life, it is necessary to achieve high ion conductivity at the electrode/electrolyte interface and in the electrolyte, as well as to eliminate dendrites growth in the battery. Based on the critical requirements outlined above, this paper discusses the applications of advanced imaging technologies in relevant studies. Recent progresses in investigations of all-solid-state lithium batteries by imaging techniques including electron microscopy, scanning probe microscopy, X-ray tomography, magnetic resonance imaging and optical microscopy are summarized.


Recent Progress On Tio2-Based Anode Materials For Sodium-Ion Batteries, Si-Tian Lian, Jian-Shuai Lv, Qiang Yu, Guang-Wu Hu, Zhuo Chen, Liang Zhou, Li-Qiang Mai Feb 2019

Recent Progress On Tio2-Based Anode Materials For Sodium-Ion Batteries, Si-Tian Lian, Jian-Shuai Lv, Qiang Yu, Guang-Wu Hu, Zhuo Chen, Liang Zhou, Li-Qiang Mai

Journal of Electrochemistry

Titanium dioxide (TiO2) represents a stable, low-cost, and nontoxic anode material for sodium-ion batteries (SIBs). However, the low electrical conductivity limits its electrochemical activity (specific capacity) and rate capability, hindering its widespread applications. In this article, we show that different crystal forms of TiO2 have different pore structures, resulting in the distinct sodium storage capacities. Accordingly, the article introduces how TiO2 microstructures influence sodium storage. The nanoparticle structure can improve the rate performance of the material due to its short ion diffusion distance, and the internal cavity of the hollow structure is beneficial to cycle stability. …


A Comparative Study Of Pre-Lithiated Hard Carbon And Soft Carbon As Anodes For Lithium-Ion Capacitors, Zhao Li, Xian-Zhong Sun, Wen-Jie Liu, Xiong Zhang, Kai Wang, Yan-Wei Ma Feb 2019

A Comparative Study Of Pre-Lithiated Hard Carbon And Soft Carbon As Anodes For Lithium-Ion Capacitors, Zhao Li, Xian-Zhong Sun, Wen-Jie Liu, Xiong Zhang, Kai Wang, Yan-Wei Ma

Journal of Electrochemistry

Lithium-ion capacitor (LIC) has emerged to be one of the most promising electrochemical energy storage devices. Presently, activated carbon (AC) is the mostly used cathode material for LIC. Nevertheless, various carbonaceous materials can be used as anode materials, such as hard carbon (HC) and soft carbon (SC). Therefore, HC and SC with different structural and electrochemical characteristics have been investigated as the anode materials of LICs in this work. Compared with the HC electrode, the SC electrode showed higher electronic conductivity and reversible capacity. The rate capabilities of the two carbonaceous materials as a function of coating thickness have been …