Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 34 of 34

Full-Text Articles in Engineering

Effect Of Nitrogen Content In Catalyst Precursor On Activity Of Fen/C Catalyst For Oxygen Reduction Reaction, Zhi Yang, Ya-Yun Shen, E Zhou, Cheng-Ling Wei, Hao-Li Qin, Juan Tian Feb 2020

Effect Of Nitrogen Content In Catalyst Precursor On Activity Of Fen/C Catalyst For Oxygen Reduction Reaction, Zhi Yang, Ya-Yun Shen, E Zhou, Cheng-Ling Wei, Hao-Li Qin, Juan Tian

Journal of Electrochemistry

Non-noble metal catalysts with high activity and low cost have attracted increasing interest as potential catalysts for oxygen reduction reaction (ORR) to replace Pt-based catalysts. In this paper, the effect of nitrogen content in catalyst precursor on ORR activity of FeN/C catalyst was investigated by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) surface area and pore size distribution measurements, transmission electron microscope (TEM), thermogravimetric analysis (TGA), and rotating disk electrode (RDE) techniques. The results show that the most active catalyst was obtained by pyrolysis in argon at 1050 °C with a catalyst precursor containing 20wt% 1,10-phenanthroline, 1wt% Fe and Black Pearl 2000. …


Preparations Of Nickel-Iron Hydroxide/Sulfide And Their Electrocatalytic Performances For Overall Water Splitting, Hang-Shuo Lu, Xiao-Bo He, Feng-Xiang Yin, Guo-Ru Li Feb 2020

Preparations Of Nickel-Iron Hydroxide/Sulfide And Their Electrocatalytic Performances For Overall Water Splitting, Hang-Shuo Lu, Xiao-Bo He, Feng-Xiang Yin, Guo-Ru Li

Journal of Electrochemistry

The Ni-Fe/Ti oxygen evolution electrode was prepared by electrodeposition on a titanium mesh substrate. Then, the as prepared Ni-Fe/Ti electrode was used to derive the Ni-Fe-S/Ti hydrogen evolution electrode through solid phase sulfuration. The effects of the molar ratio of Ni 2+ to Fe 3+ in the electrolyte and the amount of thiourea on the structures and electrochemical performances of Ni-Fe/Ti and Ni-Fe-S/Ti electrodes were investigated. The results show that the oxygen evolution performance of Ni-Fe/Ti electrode was first increased and then decreased with the increase of nickel ion content in the electrolyte. The Ni9Fe1/Ti electrode exhibited the best oxygen …


Preparation And Electrocatalytic Performance Of Nico2O4/Ni Foam For Hydrogen Peroxide Electrooxidation, Wei-Wei Chen, Fei-Fan Zhang, Jia-Liang Du, Yi Wang, Chun-Lin Zhao, Kai Zhu, Dian-Xue Cao, Gui-Ling Wang Feb 2020

Preparation And Electrocatalytic Performance Of Nico2O4/Ni Foam For Hydrogen Peroxide Electrooxidation, Wei-Wei Chen, Fei-Fan Zhang, Jia-Liang Du, Yi Wang, Chun-Lin Zhao, Kai Zhu, Dian-Xue Cao, Gui-Ling Wang

Journal of Electrochemistry

The electrodes of Ni foam supported NiCo2O4 nanowires were prepared by hydrothermal method, followed by a thermal treatment in air, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the NiCo2O4 nanowires had a diameter of about 50 nm with a length up to 3 ~ 5 μm. The catalytic performances of the Ni foam supported NiCo2O4 nanowires for H2O2 electrooxidation were studied by cyclic voltammetry and chronoamperometry. The results show that the Ni foam supported NiCo …


Recent Progress In The Mechanistic Understanding Of Co2 Reduction On Copper, Matthew M Sartin, Wei Chen, Fan He, Yan-Xia Chen Feb 2020

Recent Progress In The Mechanistic Understanding Of Co2 Reduction On Copper, Matthew M Sartin, Wei Chen, Fan He, Yan-Xia Chen

Journal of Electrochemistry

In this review, we present the major developments in the understanding of the mechanisms of the electrochemical reduction of CO2 from a historical perspective. Most of the work discussed in this review was carried out at copper electrodes, as this is the only material at which hydrocarbons are produced in reasonable quantities. The emphasis focuses on the differentiation of mechanisms for the generation of C1 and C2 products as well as factors and methods for controlling the product selectivity of CO2 reduction. We have highlighted ambiguities, assumptions, and important methodologies, such as differential electrochemical mass spectrometry and electrochemical …